I am currently a member of NVIDIA Research, where I lead the Programming Systems and Applications Research Group. Prior to joining NVIDIA, I was an assistant professor in the Department of Computer Science of the University of Illinois at Urbana-Champaign. I graduated with my Ph.D. from the Computer Science Department of Carnegie Mellon University.
Fully Homomorphic Encryption (FHE) is a cryptographic method that guarantees the privacy and security of user data during computation. FHE algorithms can perform unlimited arithmetic computations directly on encrypted data without decrypting it. Thus, even when processed by untrusted systems, confidential data is never exposed. In this work, we develop new techniques for accelerated encrypted execution and demonstrate the significant performance advantages of our approach. Our current focus is the Fully Homomorphic Encryption over the Torus (CGGI) scheme, which is a current state-of-the-art method for evaluating arbitrary functions in the encrypted domain. CGGI represents a computation as a graph of homomorphic logic gates and each individual bit of the plaintext is transformed into a polynomial in the encrypted domain. Arithmetic on such data becomes very expensive: operations on bits become operations on entire polynomials. Therefore, evaluating even relatively simple nonlinear functions with the CGGI cryptosystem, such as a sigmoid, can take thousands of seconds on a single CPU thread. Using our novel framework for end-to-end accelerated encrypted execution called ArctyrEX, developers with no knowledge of complex FHE libraries can simply describe their computation as a C program that is evaluated 18x faster on average relative to the GPU-accelerated Concrete library for multiplication-intensive benchmarks.
Domain-specific, fixed-function units are becoming increasingly common in modern processors. As the computational demands of applications evolve, the capabilities and programming interfaces of these fixed-function units continue to change. NVIDIA’s Hopper GPU architecture contains multiple fixed-function units per compute unit, including an asynchronous data movement unit (TMA) and an asynchronous matrix multiplication unit (Tensor Core). Efficiently utilizing these units requires a fundamentally different programming style than previous architectures; programmers must now develop warp-specialized kernels that orchestrate producer-consumer pipelines between the asynchronous units. To manage the complexity of programming these new architectures, we introduce Cypress, a task-based programming model with sequential semantics. Cypress programs are a set of designated functions called tasks that operate on tensors and are free of communication and synchronization. Cypress programs are bound to the target machine through a mapping specification that describes where tasks should run and in which memories tensors should be materialized. We present a compiler architecture that lowers Cypress programs into CUDA programs that perform competitively with expert-written codes. Cypress achieves 0.88x–1.06x the performance of cuBLAS on GEMM, and between 0.80x–0.98x the performance of the currently best-known Flash Attention implementation while eliminating all aspects of explicit data movement and asynchronous computation from application code.
We introduce Diffuse, a system that dynamically performs task and kernel fusion in distributed, task-based runtime systems. The key component of Diffuse is an intermediate representation of distributed computation that enables the necessary analyses for the fusion of distributed tasks to be performed in a scalable manner. We pair task fusion with a JIT compiler to fuse together the kernels within fused tasks. We show empirically that Diffuse’s intermediate representation is general enough to be a target for two real-world, task-based libraries (cuPyNumeric and Legate Sparse), letting Diffuse find optimization opportunities across function and library boundaries. Diffuse accelerates unmodified applications developed by composing task-based libraries by 1.86x on average (geo-mean), and by between 0.93x–10.7x on up to 128 GPUs. Diffuse also finds optimization opportunities missed by the original application developers, enabling high-level Python programs to match or exceed the performance of an explicitly parallel MPI library.
Read more on my complete list of publications.