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Interactive Point-Based Rendering of Higher-Order Tetrahedral
Data

Yuan Zhou and Michael Garland

Abstract—Computational simulations frequently generate solutions defined over very large tetrahedral volume meshes containing
many millions of elements. Furthermore, such solutions may often be expressed using non-linear basis functions. Certain solution
techniques, such as discontinuous Galerkin methods, may even produce non-conforming meshes. Such data is difficult to visualize
interactively, as it is far too large to fit in memory and many common data reduction techniques, such as mesh simplification, cannot
be applied to non-conforming meshes.
We introduce a point-based visualization system for interactive rendering of large, potentially non-conforming, tetrahedral meshes.
We propose methods for adaptively sampling points from non-linear solution data and for decimating points at run time to fit GPU
memory limits. Because these are streaming processes, memory consumption is independent of the input size. We also present an
order-independent point rendering method that can efficiently render volumes on the order of 20 million tetrahedra at interactive rates.

Index Terms—Interactive large higher-order tetrahedral volume visualization, point-based visualization.

✦

1 INTRODUCTION

Irregular tetrahedral finite element meshes are used in a great many
scientific and engineering simulations. Traditionally, these meshes
are almost always conforming—vertices are prohibited from falling
on an edge or face of an adjacent tetrahedron—and the solutions de-
fined over them are often piecewise linear. However, large tetrahedral
meshes that are non-conforming and which represent higher order so-
lution fields are becoming increasingly common. For instance, dis-
continuous Galerkin finite element methods can easily be formulated
on non-conforming meshes as they use independent higher-order basis
functions within each element.

Providing effective visualizations of such data is a challenging
problem. The meshes are usually quite large, containing many mil-
lions of elements. Higher order basis functions significantly increase
the memory cost; a piecewise cubic field, for instance, has an order of
magnitude more coefficients than a linear field. Consequently, these
data sets are generally far too large to fit into main memory, making
it very difficult to achieve interactive rates with any volume render-
ing technique that requires depth sorting. A number of simplification
and compression methods have been proposed to help manage such
large data, but they are generally not applicable to the kind of non-
conforming meshes with potentially discontinuous higher-order solu-
tions that arise in our target applications.

We have developed a point-based system for interactively visual-
izing higher-order tetrahedral finite element solutions on commodity
desktop machines. By choosing a point-based architecture, we are
able to cleanly handle non-conforming meshes and discontinuous data
fields in the same manner as more typical datasets. While this results
in some loss in rendering quality as compared to a mesh-based ren-
derer, the loss is small and is more than outweighed by the resulting
performance benefits.

The foundation of our system is a novel adaptive view-independent
point sampling method based on a variant of Lloyd relaxation. Be-
cause of its size, we process the mesh in a streaming fashion, sampling
points from each tetrahedron independently. The memory consump-
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tion of this process is thus bounded by a small constant. It is also
guided by an error metric that attempts to minimize the error between
the underlying algebraic solution and the point-based function approx-
imation that we construct.

We have developed an importance-based stratified point decimation
method that automatically tailors the sampled point set at run time to
the capacity of the user’s hardware. We propose an order-independent
point rendering algorithm that replaces explicit depth sorting with a
depth-based weighted blending and attenuation scheme. This pre-
serves many depth cues while maintaining high point throughput. We
also use a selective shading function to emphasize important interior
features. Our rendering method allows us to perform all rendering and
blending on the GPU with great efficiency.

Finally, we demonstate the use of our system for visualizing shock
surfaces in spacetime elastodynamic simulations. The solutions are
produced by a discontinuous Galerkin finite element method and con-
tain up to 17.6 million elements, each of which defines a piecewise
cubic displacement field. The shock surfaces that we visualize capture
much of the interesting structure of the solution in this kind of prob-
lem domain, and can provide significant insight into the behavior of
the physical process being simulated.

2 RELATED WORK

Volume rendering methods can be broadly classified as either indi-
rect methods, such as isosurfacing [20], or direct methods such as
ray casting [33], splatting [34], and cell-projection [26]. Many di-
rect volume rendering methods can be accelerated by modern graphics
hardware [18]. Most direct methods require depth sorting whereas a
relatively small number, most notably maximum intensity projection
(MIP) [14] and X-ray methods [31], are order independent. These have
a significant performance advantage when handling huge data sets, but
their quality is often rather poor because of the loss of depth cues, es-
pecially the occlusion. Several methods have been suggested to help
provide useful depth cues, including perspective, shading, and stereo
rendering [21].

Data reduction methods, such as simplification [11], compres-
sion [30] and other multiresolution methods [9], are often used to han-
dle large volume meshes efficiently. However, these methods almost
universally assume that the underlying mesh is conforming, and can-
not be applied to meshes that violate this assumption. While any mesh
may be made conforming by a sequence of edge and face splits, this
is generally impractical as it can substantially increase the total data
size.

Since Levoy [19] proposed using points as display primitives, many
point rendering techniques have been developed. They have been
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(a) Crack-tip scattering (11.6M tets) (b) Solid rocket section (17.6M tets) (c) Multiscale propagation (9M tets)

Fig. 1. Spacetime tetrahedral meshes for 2-D elastodynamic simulations. Elements vary considerably in size and contain numerous T-junctions.
The blue arrows indicate the time axis.

used to interactively render large volume data [13, 22] and complex
scenes [32, 10]. Hierarchical structures and multiresolution meth-
ods [27, 24, 6] are usually used to sample or render large numbers
of points. Point-based models are also naturally suited to memory
efficient stream processing [25, 8]. Point sets are often sampled by
stochastic sampling [16, 7] or other importance-based techniques.
Less common are methods based on point approximation theory. A
notable recent example is the work of Grimm et al. [12], who use a
Taylor series expansion to allocate points in a volume described by
a regular grid. Point sets are often rendered by splatting [5, 15], but
this normally requires depth sorting of the points. To save time and
space when rendering large point sets, order-independent methods [7]
can be used. Various techniques can be used to improve the quality of
meshless methods so that they rival mesh-based alternatives [2].

Only a handful of existing methods address the visualization of
higher order volume data. Most of those that do were designed for
rendering surfaces within the volume either by plane slicing [35] or by
ray casting [23, 3]. An alternative to directly processing higher order
data is to build a sufficiently accurate piecewise linear refinement of
the mesh [29]; however, this can also increase data size substantially.
Sadowshy et al. [28] directly render higher-order volumes by comput-
ing higher-order attenuation integrals for projected tetrahedra. Unfor-
tunately, performance can degrade quickly as the size of the integral
grows exponentially in the degree of the field.

3 OVERVIEW

Our primary target application is the visualization of solutions pro-
duced by spacetime discontinuous Galerkin finite element meth-
ods [1]. The solution datasets typically consist of non-conforming
tetrahedral meshes with tens of millions of elements. For the elasto-
dynamic problems we study here, the solution itself is a displacement
field defined per-element as a linear combination of higher order basis
functions—cubics for all examples shown here.

Figure 1 shows the three spacetime mesh examples used in this pa-
per. Each is a 3-D spacetime built over a 2-D spatial domain with
time following the blue arrows. The simulation shown in Figure 1a
models crack-tip wave scattering within an elastic solid subjected to
shock loading. The presence of shock waves is implicit, and clearly
visible, in the refinement of the mesh. In Figure 1b we see a simula-
tion of wave scattering in a section of a solid rocket booster. Again,
the mesh refinement alone hints at a complicated pattern of interweav-
ing superimposed shocks in spacetime. Finally, Figure 1c represents a
multiscale simulation of circular waves scattering from the middle of
a plate through two arrays of void spaces.

The motivation for our work is to provide a more complete visual-
ization of the obvious and important shock structure that is indirectly
apparent in the pattern of mesh refinement. These shocks correspond
to sudden changes in the velocity field. Shock waves in a 2-D spatial
domain sweep out shock surfaces in 3-D spacetime.

Fig. 2. Visualizing shock isosurfaces for the crack-tip problem (Fig. 1a)
produces unsatisfactory results.

Assuming that we could define a scalar “shock strength” scalar field
(see §7), it would be natural to consider displaying these surface-like
shock features using isosurfacing. However, as we can see in Fig-
ure 2, which shows an example of applying Marching Tetrahedra to
the crack-tip dataset, this is obviously unsatisfactory. The underlying
displacement field is, by its nature, discontinuous between elements.
These discontinuities can become even more pronounced in the deriva-
tive fields used to compute velocity gradients, and hence the presence
of shocks. These discontinuities, coupled with the non-conforming
nature of the mesh, make it very difficult to produce a good isosur-
face. Moreover, due to numerical imprecision, it is extremely difficult
to identify a single isovalue that corresponds precisely with a given
shock surface. Shock waves frequently interweave each other, result-
ing in complex pattern of shock surfaces, as shown in In Figure 1b.

Rather than isosurface rendering, we aim to produce interactive
high-quality volume visualizations of these interweaving superim-
posed surface-like shock features. We accomplish this by building
a point-based approximation of the shock strength field as described
in Sections 4 and 5. To render these point sets in real time, we have
developed a high-performance order-independent rendering algorithm
described in Sec. 6.

4 POINT GENERATION

We take a point-based approach to visualizing these large datasets. In
this section, we describe our algorithm for generating a point-based
representation of the volume from the initial tetrahedral mesh. This
sampling algorithm attempts to produce a point set that provides a
good approximation of the underlying scalar field. It is thus gener-
ated without regard to run-time constraints on rendering capacity or
viewing parameters.

Because of the size of the meshes we wish to process, memory ef-
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ficiency is a crucial concern. Therefore, we process each tetrahedron
independently, treating the entire mesh as a single data stream. Total
memory consumption for sampling is thus bounded by a small con-
stant.

For each tetrahedral element, we wish to generate a set of one or
more point samples. We assume that the data we wish to render within
an element is a scalar field f : R

3 → R expressed as a linear com-
bination of non-linear basis functions. This function f may be the
solution itself or a derived field. In our elastodynamics examples, for
instance, f is based on velocity gradient magnitudes derived from the
underlying displacement field and the basis functions are cubic ratio-
nal polynomials.

4.1 Sampling at a Point
For a single point at location xi ∈ R

3, we wish to record some data
about the function f that will allow us to reconstruct it at run time
for the purposes of rendering. Like Grimm et al. [12], we define a
generic sample at xi to be a partial prefix of the coefficients of the Tay-
lor expansion of f about xi. However, unlike their work, we operate
on continuous functions defined within an element rather than discrete
functions defined over regular grids. Therefore we can algebraically
compute the Taylor expansion of f

f (xi +h) = f (xi)+∇ f (xi)T h+
1
2

hT [H f (xi)]h+ · · · (1)

where ∇ f and H f are the gradient vector and Hessian matrix of f ,
respectively. A generic point sample will thus consist of selected co-
efficients from the sequence ( f (xi),∇ f (xi),H f (xi), · · ·).

For the rendering system we present in this paper, we require only
the coefficients through first order. Thus for each sample point xi we
record the pair ( f (xi),∇ f (xi). Furthermore, because the renderer re-
stricts point footprints to be isotropic, we will use only the order-0
terms for reconstructing the function f and the order-1 terms for nor-
mal and shading computations.

To each point sample xi we assign a spherical influence region of
radius ρi. For a tetrahedron containing k samples, we set these radii
so that the volume of each ball is 1/k the volume of the tetrahedron.
Within each spherical influence volume, we define the approximation
error

Er(xi) =
∫

( f (xi)− f (x))2 dV (2)

using the value f (xi) that was sampled at xi. The total approximation
error for a tetrahedron containing a set of samples X is simply the sum

Er(X) = ∑
xi∈X

Er(xi) (3)

4.2 Estimating Sample Set Size
Before allocating point samples within an element, we wish to make a
rough estimate of the number of sample points needed. This will make
the relaxation algorithm described in the next section more efficient.

Since we are rendering scalar volumetric data with piecewise-
constant samples, the number of points to be sampled from each ele-
ment should be related to the range of the scalar field over this element.
With a tetrahedron τ , we define the local contrast S as the ratio of the
function range within τ to the function range over the entire volume:

S =
max fτ −min fτ
max f −min f

(4)

We choose the initial number of points K to be sampled from τ to be

K =
⌊

S
ST

⌋
+1 (5)

where ST is user-alterable contrast threshold, for which we generally
use a value of 10−3. Also note that this definition guarantees at least 1
sample point per tetrahedron.

4.3 Picking Sample Locations
We now have an initial estimate of how many points should be sampled
from a given tetrahedron. Using this as a starting point, we apply a
Lloyd relaxation method to find a good number of point samples and
their proper positions so that the point approximation error is small.

(a) Points assigned to centers (b) Centers are updated

(c) New center inserted (d) Points are reassigned

Fig. 3. An illustration of one iteration of Lloyd relaxation, with which we
position sample centers in each tetrahedron.

We begin by picking a discrete set of N “testing” points within the
tetrahedron at which to evaluate the field. This approximation in lieu
of actually computing the error integrals defined above avoids consid-
erable overhead. These points are distributed on a regular grid in the
barycentric space of the element, and we find a sampling density of
about 300 points per tetrahedron works well. We pick K testing points
at random to become sample points, and associate each testing point
with the sample point which minimizes the approximation error at the
testing point. This partitions the testing points into clusters with each
sample point being the “representative” of its corresponding cluster.
Having constructed these clusters, we move the representative sample
points to the geometric barycenter of their associated testing points.
We repeat this process of clustering and sample relocation until the
samples are not moved or the total error reaches a specified threshold.
If the process converges with an error higher than the threshold, or if
it does not converge within some maximum number of iterations, we
insert additional sample points. Figure 3 illustrates this process.

This algorithm is quite similar to the well known Lloyd relaxation
method for k-means clustering. However, notice that we use the Tay-
lor approximation error to grow clusters and the Euclidean metric for
repositioning samples in clusters. Consequently, the approximation
error will not always shrink monotonically. Therefore, in cases where
we terminate relaxation due to hitting the maximum iteration count,
we may need to look back through past iterations to find the sample
point configuration with smallest total error.

5 POINT DECIMATION

After generating points within all tetrahedra, the entire point set has
been built on disk. Since the sampling is performed with respect to
approximation error, it may well contain more points than can be effi-
ciently rendered on the target PC. Therefore, we must be able to select
a subset of the sampled points that will fit within the rendering capac-
ity of the user’s hardware while still faithfully reproducing the solution
data.

5.1 Importance Culling
For most simulations, including those we examine here, there are large
regions of the solution domain in which relatively little of interest
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(a) 6.46 million (b) 1.96 million

(c) 1 million

(d) 600,000

Fig. 4. Decimation of the point set for the solid rocket section at multiple
levels of detail. Labels indicate number of points rendered, and images
are shown at proportionally reduced resolutions.

is happening. In our elastodynamic examples, these are the regions
where the velocity gradient is near 0. We consider it safe to cull
points in these less important regions—excluding points on the vol-
ume boundary—which are devoid of “interesting” features. In typical
examples, a very large number of points can be culled in this manner.
In our solid rocket dataset, for instance, a total of 10.4 million points,
about 56% of the total, can be culled due to lack of importance.

When a suitable importance threshold is known a priori, as it is
with our examples, we can integrate culling into the sampling phase.
After the set of samples for a single tetrahedron has been generated,
any sampled point which falls below the threshold is simply discarded.

5.2 Stratified Decimation

At this stage, we have a collection of “important” points. Based on the
memory size and rendering efficiency of the target GPU, we can com-
pute a target number of points to retain that can be rendered at interac-
tive rates. To achieve this target, we need a decimation procedure that
can be executed when the renderer is initialized. It is obviously essen-
tial that the decimation process be extremely efficient, so that it adds
only minimal overhead to the total initialization time. To achieve this
goal, we use an importance-based stratified field decimation method
that removes important points uniformly.

One stratified field sampling approach, such as the one used by
Callahan et al. [4], is to divide the range of f into uniform intervals and
to randomly select equal numbers of samples from each interval. This
is quite effective if the histogram of samples is fairly uniform over the
range of f . However, for cases such as those of interest to us, where
the histogram is extremely uneven and where the majority of samples
occur in small ranges of the histogram, this approach does not work
well.

Instead of uniformly stratifying the range of f , we uniformly strat-
ify by sample density. First, we sort all points by their sample value.
We can now construct m intervals with (nearly) equal numbers of
points. If our point target is n, then we will randomly select n/m points
from each interval. For the solid rocket section shown in Figure 4a,
about 1.5 million points were removed from the raw 7.5 million point
set.

After decimation, we must adjust the influence regions of the sur-
viving points so that the volume is covered appropriately. Since we
remove points uniformly, we can simply enlarge the volume of each
influence region by the ratio of the sizes of the original and surviving
point sets.

Figure 4 illustrates the results of our decimation process on the solid
rocket section data. The point set size for Figure 4a was chosen to
achieve interactive rendering rates. In addition, we selected progres-
sively smaller sizes while simultaneously decreasing the output reso-
lution. As we can see, the output quality is maintained quite well by
our decimation approach.

6 POINT RENDERING

Our aim is to produce high-quality visualizations of complex inter-
weaving shock surfaces in such a way that their structure will be
clearly revealed. We also want to enhance these surface-like features
so that they stand out from the surrounding volume. Kraus [17] ren-
ders isosurfaces with order-dependent volume rendering techniques,
enhancing them with effects such as silhouette illumination. However,
this method renders the isosurfaces with uniform opacity and color,
independently of the local gradient of the visualized scalar field, and
this is not suitable for our data where multiple surface interweave with
wide scalar value ranges.

We have already discussed the fact that it is difficult to visualize
datasets that are too large to fit into memory using typical volume ren-
dering methods. One of the primary reasons for this is their reliance
on depth sorting. Disregarding the use of parallel clusters for visu-
alization, establishing efficient data structures and out-of-core sort-
ing are expensive and will not in general allow us to achieve inter-
active rendering rates. For our problem, the somewhat atypical order-
independent methods, such as MIP and X-ray rendering, are attractive
alternatives. They independently combine any sampled value in any
order to obtain the final value. But while order-independent methods
have good performance characteristics for very large volumes, they
necessarily lose occlusion depth cues. Therefore, we augment the ba-
sic order-independent method with additional terms that help provide
enhanced depth cues without depth sorting.

The core of our order-independent rendering method is a weighted
accumulation technique where the weight of a point depends on its
depth. The color I(q) of a pixel q is a weighted sum over the set of
points {p} whose screen space footprints contain q

I(q) =
∑p IpWp

∑iWp
(6)

The contribution Ip for each point p is determined using the selective
shading function

Ip =
{

C( f ), f < F
S( f ), f ≥ F (7)

We distinguish points by whether their function value f is above or
below a threshold F . For those below, we simply use a direct color
mapping indicated by C( f ); all examples in this paper use a rainbow
color ramp for this mapping. Those points above the threshold are
considered surface features, which we shade using the standard Phong
illumination model. This shading function, indicated by S( f ) uses the
sampled gradient of the scalar field f as the normal for shading. The
purpose of this selective shading is to enhance the important interior
features (e.g., shocks in our elastodynamic examples).

The weight Wp for a point at depth d is

Wp =
{

α0 e−d , f < F
α1 e−d , f ≥ F

(8)

Here again, we assign different attenuation rates to non-feature (α0)
and feature (α1) points. By choosing α1 > α0 we can prevent distant
feature points from being unnecessarily obscured by intervening non-
feature regions.

Recall that we assign each point a spherical influence region. There-
fore, the screen projection of the point should be the projection of the
corresponding sphere. However, for efficiency we wish to approximate
this using a quadrilateral which bounds the projection of the sphere.

To take advantage of the performance of modern graphics hard-
ware, our weighted blending scheme is implemented entirely on the
GPU. This requires two passes where all processing is performed in
fragment programs. The first pass processes each point in a streaming
fashion. For each point, we compute its contribution to every pixel
within its projection. Each pixel has its own accumulator storing the
contribution from all points. The contribution is the shading value
weighted by the distance attenuation function. The distance weight
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is also recorded for normalization in second pass. All accumulation
values are stored in a texture containing one texel per screen pixel.
After all points are rendered to this texture, on the second pass, the
accumulated values for each pixel are fetched and normalized by the
accumulated weights. We use 16-bit floats for these computations as
8-bit pixels have insufficient dynamic range and 32-bit floats incur an
unacceptably large performance penalty on current hardware.

(a) Simple blending (b) ... depth weighting (c) ... and shading

Fig. 5. Adding depth weighting and selective shading to simple color
blending produces substantially enhanced images.

Figure 5 shows the impact of our rendering enhancements on the
multi-scale propagation dataset. This group of pictures are the side
view of the model in Figure 7. Figure 5a is an image generated using
order-independent unweighted color blending. Since all depth infor-
mation is lost, it is very hard to see the structure of the shock sur-
faces that we are viewing. For instance, it is unclear whether the left
vertical lines are closer or further than the right vertical lines. Fig-
ure 5b is rendered using our depth-weighted blending. Clearly, more
of the structure of the solution has become evident. However, the
picture looks monotone because distant features are attenuated by the
distance-based weight function. Figure 5c is generated by our method.
We assign a different diminishing factor for feature and non-feature
parts. And large scalar field regions are selectively shaded to enhance
the feature. This rendering clearly provides much clearer depth cues
than either of the other images.

7 SHOCKS IN SPACETIME ELASTODYNAMIC SIMULATIONS

For the examples used in this paper, the solution field is a 2-
dimensional displacement field. They are represented using a cubic
polynomial barycentric basis, containing 20 individual functions. For
each point (x,y,t) in spacetime, −→α = (α1,α2,α3,α4) represents the
barycentric coordinates of (x,y,t) within the surrounding tetrahedron,
and the displacement is:

u(−→α ) =
20

∑
i=1

cimi(−→α ) (9)

Here, the 2-D coefficient vectors ci are the finite element solution data
and mi ranges over the barycentric coordinate bases.

We wish to detect shocks in the solution. They are among the most
important structural features of the solutions. Shocks are discontinu-
ities in nature. They are abrupt changes of some attribute. To find these
discontinuities, the natural approach is to look for very high gradients.
The simulation problems on which we focus lie in a spacetime domain,
which is different from the general 3-D domain since the spatial and
temporal dimensions can be decoupled. Rather than using gradients
in the general 3-D domain, we use spatial derivatives in the space-
time domain. Therefore, to find the shocks of some field in spacetime,
we compute the spatial derivatives of that field. Specifically, we will
detect shocks by computing gradients of the velocity field.

The spacetime velocity field v(−→α ) is the temporal derivative of the
displacement field.

v(−→α ) =
20

∑
i=1

ci

(
4

∑
j=1

∂mi(−→α )
∂α j

· ∂α j

∂ t

)
(10)

We are interested in the spatial derivatives of the velocity field:

vx(
−→α ) =

20

∑
i=1

ci

(
4

∑
j=1

(
4

∑
k=1

∂ṁi(−→α )
∂α j∂αk

· ∂αk

∂x

)
∂α j

∂ t

)
(11)

vy(
−→α ) =

20

∑
i=1

ci

(
4

∑
j=1

(
4

∑
k=1

∂ṁi(−→α )
∂α j∂αk

· ∂αk

∂y

)
∂α j

∂ t

)
(12)

Note that only 4 components of the basis functions’ spatial temporal
derivatives ∂ ṁi(−→α )

∂ αj∂ αk
are non-zero, therefore only 4 components from ci

are relevant to this computation.
We define the shock function S as the squared magnitude of the

velocity gradient.

S(−→α ) = vx(
−→α )2 +vy(

−→α )2 (13)

We allow the user to define a suitable threshold T such that any point
with a shock value above T will be considered to lie on a shock.

8 RESULTS AND DISCUSSIONS

In this section, we examine the visual performance of our visualiza-
tion system. All images were generated interactively at a resolution of
800×600 at roughly 20 frames per second. The machine used for these
tests was a Windows XP desktop system with a 3 GHz Pentium 4 Xeon
processor, 2 GB of memory, and an nVidia QuadroFX 4500 graphics
card.

Figure 6 shows an elastodynamic simulation of a shock wave scat-
tering off a crack in a solid metal plate. Sudden traction loading along
one edge of the domain initiates a shock wave that travels across the
plate and reflects off the opposite side. This is clearly visible as two
planar sheets extending through the spacetime volume. When the
shock strikes the crack tip, it creates a new circular wave. In this space-
time rendering, it is visible as a cone-shaped feature. The apex of the
cone-shaped region indicates the initial scattering event, as both shown
in the left-most images on spacetime mesh in Figure 1 and visualiza-
tion in Figure 6. As shown in the side view images in Figure 6, the
outer perimeter of the cone indicates the progress of the faster-moving
dilatational shock wave, while the dark circular band within the cone
traces the trajectory of the slower shear shock wave. Our visualization
faithfully reflects this physical simulation. The visible presence of a
Rayleigh wave—the lighter and steeper wave ascending from the ini-
tial edge—is a particularly important feature of use to the engineers
engaged in this project. These waves are typically too weak to be
found and visualized, whereas our method makes them quite clear.
About 6.54 million points are rendered.

Figure 7 shows a multiscale model where pressure and shear shock
waves propagate from a circular plate in the domain through two ar-
rays of voids at either end of the circular plate. The faster pressure
shock waves are reflected, the shear waves at right are slower and are
not reflected during this simulation. Two vertical bands are generated
as the waves pass through two arrays of voids. For the coarser array
at right, the shear waves are scattered in different directions because
of the disturbance from the void. For the dense array of voids at left,
there is almost no scattering of shocks to be captured. Viewing this
obvious abnormal phenomenon leads our engineering collaborators to
examine their simulation more carefully, discovering areas of insuffi-
cient numerical precision and overly weak boundary conditions. Thus,
we have first-hand evidence that our visualization system can serve as
a useful and practical diagnostic tool for engineers engaged with a par-
ticular simulation problem. About 6.95 million points are rendered.

Figure 8 is an example showing that our distance weighted order-
independent rendering method can visualize complicated interweaving
shocks without losing depth information. This is a model of a single
sector of a 2-D cross section of a star shaped solid rocket grain. As
combustion initiates within the rocket core, the grain is subjected to
sudden pressurization. Pressure and dilatational waves are transmitted
through the section, and surface waves are moving along the sector
boundaries. As time advances, these waves inter-reflect and intersect
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Fig. 6. Shock visualization in crack-tip scattering problem from different views. About 6.54 million points are rendered interactively.

Fig. 7. Shocks visualization for multiscale simulation model from different views. About 6.95 million points are rendered.

other waves, forming a complex wave pattern (see, for instance, the
upper right corner of the volume in the left-most image). Our pic-
tures clearly convey the history of even these complicated shock wave
behaviors. About 6.5 million points are rendered.

The quality of our meshless point-based volume visualization
method result is very close to the quality of rendering by direct ray
casting. This comparison is illustrated in Figure 9. We rendered
this 11.6 million tetrahedra mesh using both our interactive renderer
(Figure 9a) and a ray caster (Figure 9b). Both used the same order-
independent rendering equation and the same transfer function. The
interactive point renderer produced an image in 0.05 seconds for about
6.54 million points while the tetrahedron ray caster took 10 minutes.
Despite the huge discrepancy in running time, the rendered results are
practically identical.

(a) Point rendering (0.05 s) (b) Ray casting (10 min)

Fig. 9. Using 6.54M points, our renderer achieves quality comparable to
ray casting of 11.6M tetrahedra in a fraction of the time.

Our visualization method was developed with a specific
application—rendering spacetime shock surfaces—foremost in mind.
However, there is nothing that prevents us from using it to visualize
more traditional kinds of finite element solution data. Shown in Fig-
ure 10 is the well-known blunt fin dataset, which we have converted to
a fully conforming tetrahedral mesh with linear basis functions. Here
we are visualizing the energy field of the solution. Our system is able
to produce quality renderings that highlight much of the structure of

the solution while maintaining a 20 fps rendering rate.

Fig. 10. Visualizing the energy field of the blunt fin dataset.

Table 1 summarizes the flow of data through our system. The input
meshes range in size up to 17.62 million tetrahedra. The number of
points sampled is generally fairly close to this size; the solution order
is low enough that only a small number of points (usually 1) are re-
quired in each tetrahedron. Large numbers of points can frequently be
culled as “unimportant”. The final point set sizes are all roughly the
same as they were all rendered on the same hardware and were thus
subject to the same capacity constraints.

Table 2 summarizes the overall performance of the various stages
of our system. Point generation is clearly the dominant cost in the sys-
tem. However, this is done off-line and must be done only once for
each dataset. Culling of unimportant points requires very little time.
Decimation, which must be performed during initialization of the ren-
derer, requires on the order of 15 seconds. While it would be ideal if
this were instantaneous, we note that this amount of time is roughly
comparable to the time it takes to parse and load the data without deci-
mation. We also note that, for large meshes with higher order solution
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Fig. 8. Shock visualization in solid rocket model from different views. About 6.5 million points are rendered.

Points (million)

Tets (mil.) Sampled Culled Decimated Rendered

Crack-tip 11.59 11.85 5.374 0.450 6.542
Rocket 17.62 17.96 10.47 1.449 6.509
Multiscale 9.009 9.013 2.522 0.496 6.946
Bluntfin 0.225 7.879 0.929 0.400 6.549

Table 1. Measurements for the point generation and decimation process
for the models shown.

Time (s) Size (MB)

Gen. Cull Decimate Draw Input Point set

Crack-tip 2400 1.0 15.0 0.05 1920 213
Rocket 3600 1.3 16.8 0.05 2920 242
Multiscale 1800 1.0 14.5 0.05 1500 227
Bluntfin 290 0.89 14.9 0.05 4.68 212

Table 2. Running time and space requirements for sampling and ren-
dering our example models.

fields, our point conversion approach results in a fairly significant re-
duction in space. The exception is the blunt fin dataset, which is fairly
coarse to begin with and, more importantly, uses only linear basis func-
tions.

9 CONCLUSION AND FUTURE WORK

In this paper, we have introduced a point-based visualization system
for interactive rendering of large, potentially non-conforming, tetrahe-
dral meshes with high order solutions. We proposed an adaptive view-
independent point sampling scheme considering the high order nature
of the data. We presented a new importance-based stratified point dec-
imation method which automatically adjust target decimation size for
target PC, and a depth-based order-independent point rendering meth-
ods. Our system can visualize shocks from tens of millions tetrahedra
with cubic order solution in real time.

While our system has already proved useful in a number of ways,
there are several areas for possible future work. More sophisticated
polynomial approximations could be used in place of Taylor approx-
imation. Our point decimation approach is fairly direct; algorithmic
improvements that would result in lower memory consumption should
be possible. Using higher-order point primitives in rendering also ap-
pears to be a particularly promising avenue for improvement.
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[18] J. Krüger and R. Westermann. Acceleration techniques for gpu-based
volume rendering. In Proc. of IEEE Visualization, pages 287–292, 2003.

[19] M. Levoy and T. Whitted. The use of points as a display primitive. In
University of North Carolina at Chapel Hill Technical Report 85-022,
1985.

[20] W. Lorenson and H. Cline. Marching cubes: A high resolution 3d surface
construction algorithm. Proc. of SIGGRAPH, 21(4):163–169, 1987.

[21] B. Mora and D. S. Ebert. Instant volumetric understanding with order-
independent volume rendering. In Proc. of Eurographics, pages 487–497,
2004.

[22] K. Museth and S. Lombeyda. Tetsplat: Real-time rendering and volume



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

clipping of large unstructured tetrahedral meshes. In Proc. of IEEE Visu-
alization, pages 433–440, 2004.

[23] B. Nelson and R. M. Kirby. Ray-tracing polymorphic multidomain spec-
tral/hp elements for isosurface rendering. IEEE Transactions on Visual-
ization and Computer Graphics, 12(1):114–125, 2006.

[24] M. Pauly, M. Gross, and L. Kobbelt. Efficient simplification of point-
sampled surfaces. In Proc. of IEEE Visualization, pages 163–170, 2002.

[25] P. Renato. Stream-processing points. In Proc. of IEEE Visualization,
pages 239–246, 2005.

[26] S. Rottger, M. Kraus, and T. Ertl. Hardware-accelerated volume and iso-
surface rendering based on cell-projection. In Proc. of IEEE Visualiza-
tion, pages 109–116, 2000.

[27] S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution point rendering
system for large meshes. In Proc. of SIGGRAPH, pages 343–352, 2000.

[28] O. Sadowsky, J. Cohen, and R. Taylor. Rendering tetrahedral meshes with
higher-order attenuation functions for digital radiograph reconstruction.
In Proc. of IEEE Visualization, pages 303–310, 2005.

[29] W. Schroeder, F. Bertel, M. Malaterre, D. Thompson, P. Pebay,
R. O’Bara, and S. Tendulkar. Framework for visualizing higher-order
basis functions. In Proc. of IEEE Visualization, pages 43–50, 2005.

[30] S.Gumhold, S. Guthe, and W. Straber. Tetrahedral mesh compression
with the cut-border machine. In Proc. of IEEE Visualization, pages 51–
58, 1999.

[31] T. Totsuka and M. Levoy. Frequency domain volume rendering. In Proc.
of SIGGRAPH, pages 271–278, 1993.

[32] M. Wand, M. Fischer, I. Peter, F. Meyer, and W. Straßer. The randomized
z-buffer algorithm: Interactive rendering of highly complex scenes. In
Proc. of SIGGRAPH, pages 361–370, 2001.

[33] M. Weiler, M. Kraus, M. Merz, and T. Ertl. Hardware-based ray casting
for tetrahedral meshes. In Proc. of IEEE Visualization, pages 333–340,
2003.

[34] L. Westover. Footprint evaluation for volume rendering. Proc. of SIG-
GRAPH, 24(4):367–376, 1990.

[35] Y. Zhou and M. Garland. Pixel-exact rendering of spacetime finite ele-
ment solutions. In Proc. of IEEE Visualization, pages 425–432, 2004.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


