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Abstract

Many algorithms for reducing the number of triangles in a surface model have been proposed, but to date there
has been little theoretical analysis of the approximations they produce. Previously we described an algorithm
that simplifies polygonal models using a quadric error metric. This method is fast and produces high quality
approximations in practice. Here we provide some theory to explain why the algorithm works as well as it does.
Using methods from differential geometry and approximation theory, we show that in the limit as triangle area
goes to zero on a differentiable surface, the quadric error is directly related to surface curvature. Also, in this
limit, a triangulation that minimizes the quadric error metric achieves the optimal triangle aspect ratio in that it
minimizes theL2 geometric error. This work represents a new theoretical approach for the analysis of simplification
algorithms. 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The simplification of detailed geometric surface models is important for a number of applications.
A typical simplification algorithms—the type we will focus on in this paper—takes a polygonal model
as input and produces an approximation composed of fewer triangles that preserves surface shape.
Simplification algorithms are an important component in the creation of multiresolution models, models
that represent the geometry and other attributes of an object at multiple levels of detail. By reducing
a model’s size, we can accelerate programs that subsequently process the data, cut storage space
and network bandwidth requirements, and decrease the time required to display the model. Natural
application areas include computer-aided design, architectural walkthroughs, finite element methods,
scientific visualization, shape acquisition, graphics on the Web, movie special effects, virtual reality, and
video games.
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1.1. Optimal approximation

Ideally, we would like to find theoptimal approximation: the triangulated surface with a given number
of triangles that has the least error relative to the original model. We will use theL2 measure of geometric
error as our ideal error metric. While perceptual error metrics might be more desirable for display
applications, they are also significantly harder to analyze. Even with a purely geometric error metric,
optimal approximation is not feasible, in general. Computing the optimal approximation of a surface with
respect to theL∞ metric is NP-hard [1]; finding such an optimal approximation requires time exponential
in the number of vertices.

To date, little has been proven about the optimality of existing surface approximation algorithms.
The existing results are narrow in scope. Some of the few are polynomial-time algorithms to find
approximations to height fields or convex polytopes that are within a factor of optimal [1]. For surfaces
more general than height fields and convex polytopes, there are simplification algorithms with bounded
error (e.g., [4]), but the number of triangles in their approximations are not bounded, so such algorithms
are not optimal in a strong sense. The authors are not aware of any polynomial time algorithms that
generate approximations to general surfaces that are provably good in both error and number of triangles.

Even simpler versions of the surface approximation problem have only limited theoretical results to
date. For example, optimal approximation of a sphere by a triangulated surface is related to optimal
packing ofn equal circles on a sphere. Although the latter problem has been studied for decades, solutions
are known only for smalln (n < 200 or so) [5]. Little has been proven about optimality for arbitrary
surfaces.

1.2. Overview

Previously we described an algorithm for surface simplification based on iterative edge contraction
and quadric error metrics [10,11]. This algorithm is fast and achieves good quality results in practice.
Simplifying a manifold surface model withn vertices has an O(n logn) running time [9]. In this paper,
we analyze its approximation errors.

Our principal tools in this analysis are differential geometry, which provides techniques for analyzing
surface curvature, and approximation theory, which provides methods for analyzing approximation
errors. Approximation theorists have determined theL2-optimal shape of triangles when approximating
bivariate functions. They found that the aspect ratio (length/width) of an optimal triangle is related to the
second derivatives of the function, i.e., its curvature [16] (see Section 3.2 for more detail). As is typical
in approximation theory, this analysis is done in the limit as triangle area goes to zero.

In this paper we attempt to interrelate practical surface simplification methods from computer graphics
with theoretical, asymptotic results from approximation theory. Specifically, we pose the questions:
why does the quadric-based algorithm work as well as it does? And how close to optimal are the
approximations generated by this algorithm?

We show that minimization of the quadric error metric computes curvature information indirectly,
and that minimization of this metric yields, in the limit of small triangles, for differentiable surfaces, a
triangulation with optimal triangle shape. Note that this does not imply that the quadric-based algorithm
yields optimal approximations for finite problems (practical problems employing a finite number of
triangles). Nevertheless, it validates that the algorithm is theoretically “on the right track” in the sense
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that as the original mesh becomes finer and finer, the resulting approximation will become more nearly
optimal, subject to suitable assumptions.

The remaining sections of the paper are organized as follows. First, we review the quadric-based
simplification algorithm, along with relevant concepts from differential geometry and approximation
theory. Next, we derive the quadric error metric for a differentiable manifold, and we prove that
minimization of the quadric error metric generates a triangulation with optimal triangle shape, in the
limit. Finally, we check this empirically, and present conclusions.

2. Quadric-based simplification

Given an initial triangulated surface, we want to automatically generate an approximation with fewer
triangles that is faithful to the original geometry. Our simplification algorithm [10,11] is based on iterative
edge contraction, a framework used by several others as well [19,14,12]. Every edge is assigned a “cost”
that is typically meant to reflect the geometric error introduced into the model as a result of contracting
the edge. A greedy approach is used: on each iteration, the lowest-cost edge is contracted, and the costs
of neighboring edges are updated. An edge contraction, which we denote(vi ,vj )→ v, modifies the
surface by unifying two vertices into one, thereby removing one vertex and two faces (see Fig. 1). The
primary difference between the various contraction-based methods is the error metric used to assign costs
to edges.

While our algorithm is designed to accommodate non-manifold surfaces, for our purpose of analyzing
its theoretical properties, we will assume that the input surface is a closed manifold. In other words,
every point on the surface has a neighborhood that is homeomorphic to a disk. We will also assume in
this paper that the topology of the surface is preserved during simplification.

2.1. Quadric error metric

Suppose that we are given a plane determined by a pointp and a unit normaln. The squared distance
of any pointv to this plane is given by(

(v −p) · n)2= vTnnTv− 2
(
nnTp

)T
v+ pTnnTp. (1)

This is a quadratic function ofv. More generally, to efficiently compute the weighted sum of squared
distances to a set of planes, we use aquadric error metricof the form

Q(v)= vTAv + 2bTv + c, (2)

Fig. 1. Edge(vi ,vj ) is contracted. The darker triangles become degenerate and are removed.
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where thequadric Qis given by

Q= (A,b, c). (3)

We call it a quadric error metric because the isosurfaces ofQ(v) are quadric surfaces. This requires
10 coefficients to store the symmetric 3× 3 matrixA, the 3-vectorb and the scalarc.

Every vertexv in the original model has a set of adjacent faces{f1, . . . , fk}. Each facefi has a unit
normalni that, together with any pointpi in the plane of that face, determines afundamental quadric

Qi = (Ai ,bi , ci)= (ninT
i ,−Aipi ,pT

i Aipi
)
. (4)

We define the initial quadricQ associated with the vertexv to be the weighted sum of these fundamental
quadrics:

Q=
k∑
i=1

wiQi. (5)

In this paper we use area-weighting, wherewi is the area of facefi , but in other contexts other weighting
schemes may be preferred. The valueQ(v) is the area-weighted sum of squared distances ofv to the
planes of its neighboring triangles. Note that, since the vertexv necessarily lies at the intersection of all
these planes, the error associated with every vertex on the original model is 0.

We define the cost of the contraction(vi ,vj )→ v to beQi(v)+Qj(v)= (Qi+Qj)(v). The minimum
of this function occurs where∇Q(v)= 2Av + 2b = 0. Solving this equation, we find that the optimal
position is

v =−A−1b (6)

and its error is

Q(v)= bTv+ c=−bTA−1b+ c. (7)

2.2. Quadric properties

For a given quadricQ, the level surfaceQ(v) = ε is the set of all points whose error with respect
to Q is ε. That is, it is the locus of points to which a vertex can be relocated with constant error. This
isosurface is a (potentially degenerate) ellipsoid whose principal axes are defined by the eigenvalues and
eigenvectors of the matrixA [9]. The ellipsoids are degenerate, or “open,” when some eigenvalues ofA

are 0; in other words, whenA is singular. The equation for finding the optimal positionv corresponds
to finding the center of the ellipsoid isosurfaces. When the ellipsoids are degenerate (i.e.,A is non-
invertible), the isosurfaces are either infinite cylinders (one 0 eigenvalue) or pairs of parallel planes (two
0 eigenvalues).

Fig. 2 illustrates the quadric isosurfaces produced by the simplification of a bunny model. Notice that
the quadrics characterize the local shape of the surface. For vertices on creases, such as on the neck
and ears, the ellipsoids are cigar shaped. They are elongated in the direction of the crease. In contrast,
where the surface is less curved, such as on the forehead, the quadrics are thin and roughly circular, like
pancakes. Intuitively, we might conclude that the quadrics will be elongated in directions of low curvature
and thin in directions of high curvature. In Section 4, we quantify this hypothesis.
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Fig. 2. Simplified bunny model with a visualization of the quadrics used for its construction. Only 1.4% of the
original 70,000 faces remain. Centered around each vertex is an isosurface of the corresponding quadric (a.k.a.
Riemannian metric tensor).

2.3. Neighborhoods

After repeated edge contractions, the quadric associated with each vertex of the approximate model
is the sum of the fundamental quadrics from a connected neighborhood of nearby vertices from the
original model (Fig. 7). On smooth surfaces, these neighborhoods are fairly regular in shape (roughly
elliptical, typically elongated in the direction of lower curvature), but on more complex surfaces they can
be gerrymandered.

Summation of the quadric matrices during edge contractions is equivalent to a neighborhood merge,
causing some fundamental quadrics to be multiply-counted. The number of times a given triangle’s
fundamental quadric is counted in a given neighborhood is equal to the number of that triangle’s vertices
that are inside the neighborhood. Thus, perimeter faces are counted once or twice, while faces interior
to the neighborhood are counted thrice. No vertices are counted more than three times. In all cases they
are area-weighted. Although it may appear undesirable, multiple counting has not been found to be a
problem in practice.

3. Background

In this section we review results from differential geometry, approximation theory, and mesh
generation that we make use of in Section 4.

3.1. Differential geometry

We will employ the theory of local differential geometry [15,2,13] to analyze the mathematical
properties of the quadric error metric.

A smooth surface patch is defined by

x = x(u, v)= [f1(u, v) f2(u, v) f3(u, v)
]T
, (8)
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where(u, v) ∈ R2 and the functionsfi are of classC2. We shall be concerned with the surface in the
neighborhood of a pointp= x(u0, v0).

3.1.1. Tangents
The partial derivatives ofx,

x1= xu = ∂x
∂u

and x2= xv = ∂x
∂v
, (9)

evaluated atp span the tangent plane of the surface atp, so any tangent vectort atp can be written as
t = x1δu+ x2δv. Consequently, we can parameterize this tangent vector by a direction vector in the 2-D
parameter space:u= [δu δv]T. The unit surface normaln at the pointp is given by

n= x1× x2

‖x1× x2‖ (10)

provided thatx1× x2 6= 0. Note that, by convention, all functions such asx1 are implicitly evaluated at
the pointp under consideration.

The length of a tangent vector can be defined in terms of the matrix

G=
 g11 g12

g21 g22

 , wheregij = xi · xj , (11)

with determinantg = g11g22− g2
12. The squared length of a tangent vector in unit directionu is given

by thefirst fundamental formuTGu. Such a measure, a second degree function of direction, defined for
each point on a manifold, is called aRiemannian metric tensor[15].

3.1.2. Curvature
Geometrically, surface curvature is defined in terms of the intersection curve of the surface and a plane

passing through the normal and the tangent vector in the directionu at that point. Thenormal curvature
of the surface in the directionu is then the reciprocal of the radius of the osculating circle at that point.
Curvatures can be positive or negative depending on the sign of the normal vector. Zero curvature means
the surface is flat (in a particular direction).

Algebraically, curvature can be quantified in terms of the matrix

B =
 b11 b12

b21 b22

 , wherebij = n · xij =−ni · xj . (12)

The change in the normal vectorn in the unit directionu, also known as thesecond fundamental form,
is uTBu.

Together, the two fundamental forms allow one to express the normal curvatureκn in the directionu
as

κn = u
TBu

uTGu
. (13)

Unless the curvature is equal in all directions, there must be a directione1 in which the normal curvature
reaches a minimum and a directione2 in which it reaches a maximum. These are calledprincipal
directions. The correspondingprincipal curvaturesκ1, κ2 at pointp are the eigenvalues of the Weingarten
mapG−1B.
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3.2. Approximation theory

Approximation theory analyzes the errors of function approximation. When working with surfaces,
one generally studies the limit as the areas of the approximating elements (in our case, triangles) vanish,
since it is much easier to prove properties of approximations for the limit than for finite approximations.
To ensure that these limits are defined, we assume that the function is twice differentiable.

Researchers have studied the effect of triangle size and shape on approximations to a bivariate function
or height fieldf (u, v). We will quantify error using theL2 metric, which is the square root of the integral
of the squared difference between two functions. Under this metric, one can ask: what triangulation
with a given number of triangles minimizes the error of piecewise linear approximation? The asymptotic
answer, discovered by Nadler, is that as the number of triangles goes to infinity, an optimal triangles’
orientation is given by the eigenvectors of the Hessian of the function at each point, and their size in
each principal direction is given by the reciprocal square root of the absolute value of the corresponding
eigenvalue [16].

3.2.1. Aspect ratio
Theaspect ratioof a rectangle is simply its width divided by its height. The aspect ratio of a triangle is

a bit more complex. It can be defined in various ways, most nearly equivalent. We define the aspect ratio
of a triangle by finding the ellipse of least area through the three vertices, and take the ratio of major to
minor axes. The aspect ratio of an equilateral triangle is thus 1.

Nadler thus found that an optimal triangle’s aspect ratio is

ρ =
∣∣∣∣λ2

λ1

∣∣∣∣1/2, (14)

where{λi} are the eigenvalues of the Hessian. The Hessian of a functionf (u, v) is the matrix

H =
 fuu fuv

fvu fvv

 . (15)

When detH > 0, the aspect ratio of (14) is the unique optimum for allLp norms withp > 1 [7,
18]. This case coincides with a positive Gaussian curvature, if we regardf as a surface in 3-D. When
detH < 0, theL2-optimal aspect ratio is not unique; there is a one-parameter family of solutions
generated by stretching (14) along one of the directions of zero curvature [16, Eq. (3)]. TheL∞-optimal
aspect ratios differ from (14) by a small factor [7].

Long, thin “sliver” triangles can be bad in certain contexts; for instance, they can lead to large condition
numbers in the matrices used for certain finite element simulations. Equilateral triangles are desirable in
such contexts. But for our goal, deriving an approximation with minimal geometric error, slivers can be
optimal.

We defineoptimal triangulationto be a triangulation that conforms to the above law, in the limit as the
number of triangles goes to infinity and their areas go to zero.

3.3. Mesh generation

Two dimensional mesh generation is the subdivision of a 2-D domain into triangles or quadrilaterals.
In many cases, meshes are used for finite element analysis, as in the solution of partial differential
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equations. Adaptive meshing techniques alternate solution of a system of equations with remeshing of
the domain. Some of these methods strive for optimal triangulations during remeshing using the Hessian
of an approximate solution function to control triangle size and shape [17,3].

The intentional generation of stretched triangles is calledanisotropic mesh generation[20]. This is
often done using the Hessian to construct a Riemannian metric tensor that gives the desired edge length
as a function of direction. A mesh generation algorithm yielding asymptotically optimally stretched
triangles in this manner was given by D’Azevedo [6], but his method is restricted to structured meshes
and a very small space of surfaces (vertex degree 6 and zero Riemann–Christoffel tensor everywhere).

Mesh generation methods have been employed to create simplification algorithms by appropriate
definition of the desired edge length function. Frey used numerical estimates of surface curvature to
construct an isotropic Riemannian metric tensor, and then used this to control a mesh generator [8]. This
method did not generate anisotropic meshes, however.

Our quadric error metric can be regarded as an anisotropic Riemannian metric tensor, and it is
applicable to unstructured meshes and general surfaces.

4. Analysis of quadric metric

We now relate our quadric error metric to the optimal triangulation results by analyzing its properties
in the limit as the areas of the triangles go to zero. More precisely, we imagine a case of a twice-
differentiable manifold from which original models can be constructed by tessellating it with specified
edge lengths. There will be two limit processes. The first limit will drive the number of triangles of the
original model to infinity while driving their areas to zero. We then sum the fundamental quadrics within
a neighborhood around a surface point. In the limit as original triangle size goes to zero, the sum becomes
an integral. This yields a formula for the infinitesimal error quadric as a function of surface curvature and
neighborhood shape. The second limit will drive the area of these neighborhoods to zero.

We prove that, in these limits, the quadric error is minimized by triangulations with optimal aspect
ratio. We also derive a quantitative relationship between the error quadrics and surface curvature.

4.1. Theoretical quadric error metric

In order to analyze the quadric error metric, we consider its behavior on a differentiable manifoldM

defined by a patchx. Suppose that we are given a point of interestp0 on M with surface normaln0

(Fig. 3). Let e1, e2 be the principal directions atp0, and letκ1, κ2 be the corresponding principal
curvatures. Ifp0 is an umbilic point (i.e.,κn is equal in all directions), it is sufficient to pick two
arbitrary, orthogonal “principal” directions. In the coordinate framee1, e2, n0, we can approximate the
neighborhood ofM aroundp0 to second degree by a surface patch [15] of the form

p(u, v)= [u v 1
2

(
κ1u

2+ κ2v
2)]T. (16)

This can be either an elliptical or hyperbolic paraboloid. Herep0= p(0,0) and the axes(u, v) coincide
with the principal axese1, e2. Such a coordinate frame exists for any point on our manifold. Use of this
frame simplifies the derivation substantially.



P.S. Heckbert, M. Garland / Computational Geometry 14 (1999) 49–65 57

Fig. 3. Local parameterization of the surface aboutp0. The neighborhoodF is the projection of a rectangular
region of the parameter domain onto the surface. This patch of surface is approximated byp(u, v).

For this surface, the matrix of the first fundamental form atp is

G=
 1+ κ2

1u
2 κ1κ2uv

κ1κ2uv 1+ κ2
2v

2

 , g = 1+ κ2
1u

2+ κ2
2v

2, (17)

and the unit surface normal isn = m/√g, written in terms of the non-unit normalm = p1 × p2 =
[−κ1u −κ2v 1]T. It is easy to verify that atp = p0, the matrixG−1B has eigenvaluesκ1 andκ2.

For the sake of simplicity, let us assume that the small neighborhoodF around the pointp0 (Fig. 3) has
the rectangular parameter domain−ε16 u6 ε1,−ε26 v 6 ε2. An elliptical domain could also be used,
and it would yield identical results to first order. We will leave the size and aspect ratio of this rectangle
unspecified for now; later we will determine the values that minimize the quadric error metric.

Every pointp in the vicinity ofp0 has a unique tangent plane from which we can construct a quadric.
Just as a vertex accumulates a sum of quadrics during simplification, we shall consider the result of the
point p0 accumulating the fundamental quadrics of all infinitesimal triangles inF . We will not attempt
to simulate multiple-counting; its effect on this limit process is negligible.

In the limit as the triangles of the original model go to zero area, the sum of area-weighted fundamental
quadrics of the infinitesimal triangles given by (4) and (5) becomes a surface integral overF . The quadric
at pointp0 will therefore have components

A=
∫ ∫
F

nnT dA, (18)

b=
∫ ∫
F

−nnTpdA, (19)

c=
∫ ∫
F

pTnnTpdA, (20)

where integration of matrices and vectors is defined by integrating each scalar component separately.
Let us focus on the matrixA. Making the substitutions dA=√g dudv andn=m/√g, it simplifies

to

A=
∫ ∫

mmT

√
g

dudv. (21)
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The matrix

mmT =


κ2

1u
2 κ1κ2uv −κ1u

κ1κ2uv κ2
2v

2 −κ2v

−κ1u −κ2v 1

 (22)

is easy to integrate by itself, but not with
√
g in the denominator. To tackle this problem, we use the

Taylor series approximation

1√
g
= 1− 1

2
κ2

1u
2− 1

2
κ2

2v
2+O

(
u4+ u2v2+ v4). (23)

In the limit of infinitesimal neighborhoods, the fourth and higher degree terms become negligible. Using
this approximation,

A=
ε2∫
−ε2

ε1∫
−ε1

mmT(1− 1
2κ

2
1u

2− 1
2κ

2
2v

2)dudv. (24)

If this integral is evaluated, dropping terms of degree six or higher inε1 andε2, a diagonal matrix results,
with entries

a11= 4
3ε

3
1ε2κ

2
1, (25)

a22= 4
3ε1ε

3
2κ

2
2, (26)

a33= 4ε1ε2− 2
3ε1ε2

(
ε2

1κ
2
1 + ε2

2κ
2
2

)
. (27)

SinceA is diagonal, these are also its eigenvalues, and the eigenvectors are the two principal directions
and the surface normal. These formulas are approximate for finite neighborhoods, and become exact in
the limit as the neighborhood size parametersε1 andε2 go to zero.

Following a similar procedure, we can evaluate the integrals forb andc:

b= [0 0 2
3ε1ε2

(
ε2

1κ1+ ε2
2κ2
)]T
, (28)

c= 1
5κ

2
1ε

5
1ε2+ 2

9κ1κ2ε
3
1ε

3
2+ 1

5κ
2
2ε1ε

5
2. (29)

We now have a complete quadricQ. Applying the formula for the optimal vertex positionv =−A−1b,
we find that

v = [0 0 −1
6

(
κ1ε

2
1+ κ2ε

2
2

)]T
, (30)

and its error with respect toQ is

Q(v)= 4
45

(
κ2

1ε
5
1ε2+ κ2

2ε1ε
5
2

)
. (31)

4.2. Theoretical aspect ratio

We now know the parameters of the quadric at any point as a function of the principal curvaturesκ1

andκ2 and the neighborhood size 2ε1× 2ε2. The former are determined by the original surface, but the
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latter are properties of the neighborhoods. We must eliminate these latter variables to make a complete
analysis.

So we push further and ask: what neighborhood shape is optimal, and what does this tell us about the
quadric error metric and the shape of triangles in the approximation? We restrict ourselves to rectangular
neighborhoods oriented parallel to the principal directions. We show that, in the limit as neighborhood
area goes to zero, minimizing the quadric error metric generates triangles with optimal aspect ratio.

To find the neighborhood aspect ratio that minimizes error, we take the expression for minimum
quadric error (31) and reparameterize it in terms ofaspect ratioρ = ε1/ε2 and mean sizeε = √ε1ε2.
Substitutingε1= ερ1/2 andε2= ερ−1/2 yields

Q(v)= 4
45ε

6(κ2
1ρ

2+ κ2
2ρ
−2). (32)

Now, let us fix the area by holding the size parameterε constant, and find the aspect ratioρ that
minimizesQ(v). This occurs when

∂Q

∂ρ
(v)= 4

45ε
6(2κ2

1ρ − 2κ2
2ρ
−3)= 0. (33)

Solving forρ, we find that minimization of the quadric error metric yields neighborhoods with limiting
aspect ratio

ρ =
∣∣∣∣κ2

κ1

∣∣∣∣1/2. (34)

We can show that the aspect ratio (34) that results from minimizing the quadric error metric agrees
with the optimum determined by Nadler. Becausep(u, v) has the simple form (16), the Hessian of its
third coordinate atp0 is a diagonal matrix with eigenvaluesλ1= κ1 andλ2= κ2. Thereforeεi should be
proportional to|κi|−1/2, and the optimal aspect ratio isε1/ε2=√|κ2/κ1|. At points of positive Gaussian
curvature, the aspect ratio “preferred” by the quadric error metric is the unique optimum; at points of
negative curvature, it is one of the optima.

Since the vertex for each neighborhood is centered within its neighborhood, the aspect ratio of the
approximating triangles is identical to the aspect ratio of the neighborhood. We have thus shown that, in
the limit, minimization of the quadric error metric achieves an optimal triangle aspect ratio. This is our
main result.

Note that in approximation theory analysis of bivariate functions, anL2 metric uses distance measured
vertically, while for optimal surface approximation, theL2 error metric is generally defined using
perpendicular distance to the surface. The two could thus disagree when applied to finite neighborhoods,
but for infinitesimal neighborhoods and parabolic patches such asp(u, v), these distance vectors
converge. This is what allows us to apply the bivariate optimality criteria of Nadler to smooth manifolds.

There are two special cases worth noting. Where the surface is locally flat, both principal curvatures
are zero, and the above formula is undefined, but in this case, any aspect ratio is optimal. And where one
principal curvature is zero and the other is nonzero, the aspect ratio of triangles will be infinite. (This
does not happen in practice, since such a triangulation would result in an infinite number of triangles.)

4.2.1. Properties of minimized quadric
We can determine the properties of the quadrics in more detail using the derived neighborhood aspect

ratio. We rewrite the dimensions of the parameter space ofF asε1 = ε|κ2/κ1|1/4 andε2 = ε|κ1/κ2|1/4.



60 P.S. Heckbert, M. Garland / Computational Geometry 14 (1999) 49–65

Substituting these values into (25) we find that the components ofA for this neighborhood are

a11= 4
3ε

4|κ1|3/2|κ2|1/2, (35)

a22= 4
3ε

4|κ1|1/2|κ2|3/2, (36)

a33= 4ε2+O
(
ε4). (37)

This confirms our intuition from Section 2: the eigenvalues ofA are indeed related to the curvature of
the surface, and the quadrics are elongated in the direction of minimum curvature.

Similarly, we can compute the optimal position

v = [0 0 −1
6ε

2|κ1κ2|1/2(s1+ s2)]T, (38)

wheresi is the signum function

si =

−1 if κi < 0,
0 if κi = 0,
1 if κi > 0

and its corresponding error is

Q(v)= 8
45ε

6|κ1κ2|. (39)

Note that, in this case,Q(v) is purely a function of the Gaussian curvatureK . Hence, the minimal error
is an intrinsic property of the surface; it depends only on the metric tensorG.

4.3. Relation to Dupin indicatrix

Nadler’s optimal triangle aspect ratio is also predicted by a simple geometric construction. At a point
on the original surface, take the tangent plane and offset it in the normal direction inward or outward. For
a smooth surface and a small offset, the curve of intersection of the plane with the original surface will
be an ellipse or a hyperbola, and the aspect ratio of these curves will be the optimal ratio given in (14).
Thus, slicing a surface with a plane parallel to the tangent gives an approximate indication of the optimal
triangle shape.

More formally, this intersection curve is called theDupin indicatrix[15]. The indicatrix for the surface
p(u, v) is a conic in the tangent plane ofp0 which is 1/

√|κn| away fromp0 in any tangent direction.
Thus, its principal axes areri = 1/

√|κi|, and its aspect ratio is
√|κ2/κ1|. The conic is an ellipse if the

principal curvatures have the same sign (Fig. 4), and it is a pair of hyperbolas if they have opposite sign.

Fig. 4. The Dupin indicatrix about a point with positive Gaussian curvature.



P.S. Heckbert, M. Garland / Computational Geometry 14 (1999) 49–65 61

5. Empirical results

The theory above tells us the aspect ratio of triangles in the infinitesimal limit as we minimize the
quadric error metric over rectangular neighborhoods oriented parallel to the principal directions. The real
quadric-based simplification algorithm is not this idealized, however. It works with sums over finite sets
of triangles, not integrals; and somewhat irregular neighborhoods (Fig. 7), not perfect rectangles.

We know from experience that our algorithm is not optimal for most real simplification tasks, but we
suspect that as the original models become more finely tessellated, for surfaces with slowly changing
curvature, far from the boundary, the algorithm will approach this theoretical limiting behavior. For
example, we find that the eigenvectors of our quadrics point approximately in the principal directions
determined by surface curvature. The theoretical prediction is least accurate where the surface curvature
is rapidly changing (e.g., near a crease) or near a boundary. Generally, the eigenvectors for the two
smallest eigenvalues of the quadric matrixA correspond to the principal directions, and the eigenvector
for the largest eigenvalue corresponds to the normal.

In practice, the neighborhoods are sometimes irregular in shape. This is due, in part, to the greedy
nature of our algorithm. On each iteration it contracts the edge of least cost. Adjacent neighborhoods
“compete” for edges to contract. Thus, the neighborhood ofn triangles that forms around a given vertex
is not necessarily the same as the set ofn triangles whose quadric error at that point is smallest. Finding
global minima in this manner would probably be much slower than the present algorithm.

Nevertheless, the empirical neighborhoods conform roughly to theory. Since our algorithm at each
iteration contracts the edge of least error, we would predict that edges along directions of low curvature
will tend to be contracted first, and neighborhoods will become elongated in the direction of low
curvature. This tends to orient the neighborhoods parallel to the principal directions. On a smooth surface,
neighborhoods are roughly centered aroundp0 because, for such surfaces, curvature changes slowly, and
the optimal vertex location for a neighborhood is near the center of that neighborhood. It is only when
curvature changes within a neighborhood that the optimal vertex location moves far off-center.

A good check of our theoretical results is to test on a smooth, closed surface with fine tessellation,
such as the ellipsoid in Fig. 5. A simplified version of the ellipsoid model is shown in Fig. 6, with
neighborhoods shown in Fig. 7. Consistent with our prediction, neighborhoods shown in the figure are

Fig. 5. Original ellipsoid model with 11,272 faces.

Fig. 6. Approximation of Fig. 5 using 800 faces.
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Fig. 7. Neighborhoods of original surface corresponding to vertices on the approximation.

Fig. 8. Graph of theoretically optimal aspect ratios versus actual aspect ratios. An aspect ratio of 1 means
equilateral, and larger values correspond to more stretched triangles. Vertical bars show mean and plus or minus
one standard deviation for each bucket.

typically elongated in the direction of least curvature. We check the aspect ratios of the triangles of Fig. 6
in Fig. 8. This shows the optimal aspect ratios (computed from the principal curvatures of the underlying
ellipsoid at the center of each triangle) versus the actual aspect ratios (computed by fitting a tight ellipse
to the triangle, as described). Although we have not proven convergence of the greedy, quadric-based
algorithm to optimal aspect ratios, we see that in practice the actual values track the theoretical values
closely for the full range of aspect ratios. The slight bias toward higher aspect ratios may be an artifact
of our empirical aspect ratio formulas or of pairwise contraction.

The algorithm is further demonstrated in Fig. 9, which shows a model simplified to 1% of its original
size, and the appropriately stretched triangles that result. This shows that the algorithm behaves well in
regions of both positive and negative curvature.

6. Conclusions

We have taken the quadric error metric from our previously published quadric-based surface
simplification algorithm and analyzed its asymptotic behavior. Using methods from differential geometry
and approximation theory, we have shown that the quadric error metric is directly related to surface
curvature, and that its minimization yields triangulations with optimal aspect ratio in the limit.

More precisely, we have proven that when used on a differentiable manifold, in the limit as the areas
of the triangles in the original model go to zero and the area of a rectangular neighborhood goes to zero,
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Fig. 9. A 47,904 face brontosaurus model (a) along with a 500 face approximation (b), the latter generated with
quadric-based simplification. Note how the triangles stretch along the neck.

minimization of the quadric error metric generates triangles that have optimal aspect ratio in the sense
of L2 geometric error. An optimal aspect ratio is the square root of the ratio of the absolute values of
principal curvatures of the surface at the point in question.

While we have not proven that our simplification algorithm yields optimal approximations for real,
finite-size problems, we have shown empirically that our algorithm follows this theoretical ideal, for
smooth, detailed models.

Although we have used differential geometry and approximation theory to validate our error metric,
our simplification algorithm is not limited to differentiable surfaces, as those theories generally are. While
curvature in differential geometry is determined by an infinitesimal neighborhood, with our error metric,
as in the real world, curvature is scale-dependent.

Several areas for future work suggest themselves:
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• Use the approach demonstrated in this paper to test the asymptotic optimality of other simplification
algorithms.
• Rigorously prove (or disprove) that quadric-based simplification yields well-shaped neighborhoods in

the limit, and that the triangles’ size, in addition to their aspect ratio, is optimal.
• Modify the quadric-based algorithm to bring its empirical behavior closer to the optimal orientation,

size, and aspect ratio. Perhaps greedy edge selection should be replaced by a more brute-force approach
akin to simulated annealing, when quality is more important than speed.
• Verify empirically that the results are invariant to the size and orientation of triangles in the original

triangulation.
• Extract curvature information from the error quadrics and use it in other ways. One could, for example,

extract quadrics that locally fit the surface (up to the sign ofκ1).

C++ code for our algorithm is available at http://www.cs.cmu.edu/˜garland/quadrics/.
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