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Figure 1: Replaced materials on Mount Rushmore. Total
time, including user interaction, was under one minute.

Abstract
Material replacement has wide application through-

out the entertainment industry, particularly for post-
production make-up application or wardrobe adjustment.
More generally, any low-cost mock-up object can be pro-
cessed to have the appearance of expensive, high-quality
materials. We demonstrate a new system that allows fast,
intuitive material replacement in photographs. We ex-
tend recent work in object selection and fast texture syn-
thesis, as well as develop a novel approach to shape-
from-shading capable of handling objects with albedo
changes. Each component of our system runs with inter-
active speed, allowing for easy experimentation and re-
finement of results.
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1 Introduction

In its simplest form, material replacement has been
widely used for decades. Chroma-keying, or blue-screen
matting [19], replaces objects of a particular colour (typ-
ically blue or green) with new objects or materials, and
is a staple of movie and television production. While
chroma-keying is most often used to replace the back-
ground, placing actors in new virtual sets, it is increas-
ingly used in special effects production to replace simple

mock-up objects with computer-generated imagery. The
advantages to this approach over simply directly inserting
the computer-generated imagery is that actors may natu-
rally interact with the mock-up object, and the mock-up
also produces lighting effects that are difficult to achieve
with computer-generated imagery, such as casting shad-
ows into the rest of the scene.

A key limitation of chroma-key systems is that one
must know before-hand which objects and materials one
wishes to replace in the final output, since only objects
of a particular distinctive colour may be replaced. In this
paper, we address a more general material replacement
problem. Given any diffuse, possibly textured object
within a photograph, and an image swatch of a desired
material, we replace the apparent material of the object
with the desired material. Thus, the makeup of an actor
may be easily adjusted after a photo shoot if errors are
discovered or a different look is desired. Logos or adver-
tisements on clothing may be removed, or new colours
and patterns applied. Internet-based vendors can show
people how user-supplied objects would look using their
fabrics, patterns, or upholstery. Since editing is fast and
intuitive, there is no user penalty for experimenting with
replacing different objects or using different textures, so
the system is useable even by novices for personal use.

Textureshop [6] pioneered the idea of using a very sim-
ple but fast approach to shape-from-shading to recover a
rough set of normals for an object in a photograph, and
using these normals to distort texture synthesis over the
object. They note that to some extent, texture variations
mask the inaccuracy of the recovered normals, and so de-
spite the low quality of the normals, they are still able to
obtain visually pleasing results. However, Textureshop
can be cumbersome to use, since object selection is based
on manual outlining, and Graphcut Textures [9] is used
as the texture synthesis engine. Manually outlining ob-
jects from photographs can be tedious, even when aided
with tools such as intelligent scissors [14]. As Graphcut
Textures are relatively slow to synthesize, experimenta-
tion with synthesis parameters is discouraged. Further-
more, the normal recovery algorithm used in Textureshop
is highly inaccurate for all but uniformly coloured, dif-



fuse objects, often requiring a non-trivial amount of user
interaction to fix normal recovery errors.

Our system makes three important, practical contribu-
tions over the state of the art:

• Integration of advanced object selection [11] with a
Gaussian mixture model [18] to allow simple, fast,
and intuitive object selection in images.

• A novel shape-from-shading algorithm making ex-
plicit use of the Gaussian mixture model of the ob-
ject selection phase. The most reliable colour cluster
drives the normal recovery, producing higher quality
normals and allowing fortexturedinput surfaces.

• The use of jump map-based texture synthesis,
which, while lower quality than other algorithms,
runs in interactive time, allowing for easy experi-
mentation with different textures and texturing pa-
rameters, such as scale and orientation.

Each step of the resulting system – selection, normal
recovery, and texture synthesis – runs in interactive time,
allowing for more intensive experimentation and refine-
ment of parameters. Users can update the selection area,
adjust recovered normals, and change textures or textur-
ing parameters, and view the effects of their changes in-
teractively. Previous methods for material replacement
require a non-trivial amount of computation time. This
lag time, especially during texture synthesis, is a severe
detriment to experimentation. It is also important to note
that once a user is happy with the parameters of the algo-
rithm, better quality texturing and rendering may be used
to produce a final high-quality result.

2 Related Work

Recently, graph cut-based techniques [2, 11, 18] have
been very successfully applied in selecting objects from
images. Previous methods [14, 15, 7] require the user
to trace the boundary of the object directly, which can
often be tedious and error-prone. In contrast, graph cut-
based approaches use strokes within or outside the object,
and compute the actual boundary by formulating an en-
ergy minimization problem to be solved by computing a
minimum cost graph cut. Grabcut [18] additionally uses
Gaussian mixtures to statistically model each region, and
requires only a box to be placed around the object. Lazy
snapping [11] instead pre-segments the image to reduce
the size of the graph cut problem and achieve real-time
updates after each brush stroke. While the focus of these
methods is on hard segmentation, high-quality mattes can
be extracted with both Grabcut or Poisson matting [21].

There are a variety of methods for computing the
shape of a 3D object from its shading in a 2D im-

age [8]. Bichsel and Pentland [1] propagate depth from
the brightest points to the rest of the surface using a min-
imum downhill principle. Most similar to ours, Lee and
Rosenfeld [10] assume local surface regions are spheri-
cal patches, yielding fast but poor results. More recently,
Cho and Chow [3] iteratively combine surfaces indepen-
dently recovered from each colour channel of an image.
Oh et al. [16] extract lighting from texture via bilateral
filtering. Zhanget al. [27] survey and compare several
shape-from-shading methods, discovering generally poor
quality and limited generality. However, our results rein-
force the conclusion of Fang and Hart [6], that high qual-
ity normals are not required to produce good synthesized
results. For objects with regular or near-regular textures,
Liu et al. [12] demonstrate excellent results by manually
fitting a regular lattice to the texture.

Recent texture synthesis methods can be classified into
two approaches. Pixel-based techniques [5] iteratively
copy pixels by searching for the best match for the cur-
rent output neighbourhood within the input image. Patch-
based methods [4, 9] instead place entire patches of tex-
ture while attempting to find a good boundary between
the existing output and the new patch. Methods to tex-
ture 3D surfaces have been demonstrated by generalizing
both pixel-based [23, 22, 26, 24] and patch-based tech-
niques [17, 20, 13]. For material replacement, we do not
necessarily have a coherent 3D surface, so the more local
pixel-based methods are a more natural solution. Tex-
ton maps [26], utilize a coarse map of prominent texture
features to yield the highest quality results for most tex-
tures. Jump map-based synthesis [24] generally produces
the lowest-quality but fastest results, and is the only tech-
nique to produce results in interactive time.

3 System Overview

Our material replacement system is composed of three
main components. First, the userselectsan object from
the input image. Once satisfied with the selection,nor-
mal recoverywith our novel colour cluster-based shape-
from-shading algorithm approximates the surface normal
at each pixel of the object. Finally, these normals are used
to produce a set of distortions to be applied during jump
map-basedtexture synthesis. In the following sections,
we describe each of these steps in detail.

4 Object Selection

Given a photograph containing objects needing mate-
rial replacement, the first task is to identify the objects
from the background. In our system, we use Lazy Snap-
ping [11] as the basic interaction mechanism, as it of-
fers the highest interactivity and natural refinement. Lazy
Snapping is a graph cut-based approach, posing the im-



Figure 2: From left to right: original image; textured re-
sult with our texture-sensitive procedure; result without
texture-awareness.

age segmentation problem as energy minimization solved
via minimum cost graph cut. The energy is a sum of two
terms: a smoothness term, which penalizes segmentation
boundaries cutting smooth areas of the image, and an ap-
proximation error term. The system statistically approx-
imates both the foreground and background, and the ap-
proximation error term ensures pixels more likely to be fit
by one model over the other are penalized for assuming
contradicting labels. The key idea of Lazy Snapping over
alternate approaches is to pre-segment areas of the image
unlikely to be cut in object selection. The graph problem
uses the resulting segments, rather than individual pixels,
as nodes, so its size (and solution time) is vastly reduced.

To augment Lazy Snapping for material replacement,
we first note that as we are concerned with textured, dif-
fuse objects, it is especially important that colour images
are handled well. Lazy Snapping’s approximation model
is ak-means clustering of the pixels that are selected by
the user as definite-foreground or definite-background.
We instead use a limited Gaussian mixture. Under a nor-
mal Gaussian mixture, each pixel is a weighted combi-
nation of the colours in the mixture, each of which is
modelled with a Gaussian distribution. Following Grab-
Cut [18], we assume each pixel is drawn from only one
colour of the mixture. In comparison tok-means cluster-
ing, the limited Gaussian mixtures include the covariance
of each colour cluster, allowing for a slightly more accu-
rate approximation error term during segmentation. For
efficiency, we do not iterate our algorithm, but once seg-
mentation is complete, we update the foreground mixture
according to the pixels actually selected. As discussed
below, this mixture is used for better normal recovery.

5 Normal Recovery

Once an object is identified, the next phase of material
replacement is to recover its normals. We generalize
Textureshop-style normal recovery to textured objects.
For simplicity of description, we assume that the light
source is at the viewer; the extension to other positions
is straightforward, though we require the user to specify
the light position if not at the viewer. The basic idea is

to assume a Lambertian reflection model, so that at the
brightest point in the image, the surface normal points to
the light source, while the darkest point of the image lies
on a silhouette and its normal aligns with the reverse im-
age gradient. For other pixels, thex andy components of
the normal are given by the reverse image gradient, while
the z component is linearly mapped from its luminance,
with the mapping fixed by the brightest and darkest points
(if lp is the luminance of pixelp, and lmin and lmax are
the minimum and maximum observed luminances, then
zp = (lp − lmin)/(lmax− lmin)). In general, the resulting
normals are very approximate, but after some smoothing
are quite useable for our application.

We improve on this approach by making use of the
Gaussian mixture model for the selected object. Each
pixel has an approximating colour cluster from the Gaus-
sian mixture. We first recover the normals over pixels of
the mostreliable colour cluster in the mixture using the
above approach. Then, normals are propagated across the
image-space boundaries of that cluster to seed the nor-
mal recovery of each subsequent colour cluster. After all
clusters are processed, some smoothing of the recovered
normals is typically required.

The reliability rc of each colour clusterc is based on
its areaac (number of pixels) and dynamic rangevc (lu-
minance variation):rc = α ∗ ac +(1−α) ∗ vc, whereα

is a user parameter (for all images in this paper, we used
α = 0.75). Intuitively, we desire the largest cluster as it
is most visually important, while we desire the cluster of
largest dynamic range as it likely contains a wide normal
variation in accordance with our assumptions above.

To propagate normals across cluster boundaries, we
assume the change in colour is entirely due to albedo
change, and the underlying surface remains smooth, al-
lowing us to copy normals across boundaries. We then
iteratively choose the cluster with the longest boundary
with already-processed clusters. Thex andy components
of the normals in this new cluster remain the reverse im-
age gradient, and thez components are still derived from
a linear mapping of luminance. However, each pixel on
the boundary of the cluster is a sample of this mapping
(its luminance and normal being copied from the neigh-
bouring cluster). We thus use these samples to compute a
least-squares fit of the luminance-to-z mapping.

In some cases, pixels on the boundary between two
colour clusters may be blends of the cluster means. Here,
boundary propagation will not work since the boundary
pixels will differ significantly from the rest of the colour
cluster, and the computed luminance-to-z mapping will
be highly inaccurate. We instead first erode the bound-
aries and extrapolate from each cluster to a sharp bound-
ary. Generally, we erode until the pixels are sufficiently
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Figure 3: The image plane is viewed from above, and two
neighbouring pixels are in green. The surface between
the pixels is approximated by a plane whose normal is n,
the average of the recovered normals at each pixel. The
texture-space distance between the two pixels, ||ds||, is
derived from the similar triangles A and B.

close to the mean of the cluster, or until a user-specified
maximum erosion is reached.

As can be seen in Figure 2, our results are much better
than simply recovering the normals over the entire object.
Note that we modulate the textured output according to
the luminance of the object in order to preserve its shad-
ing. With albedo changes, the means of various colour
clusters may have different luminances, and thus the orig-
inal luminances are not adequate for this task (this is the
main reason the “9” is very clearly visible in the right-
most image of Figure 2). Since the luminance is directly
proportional to thez component of the surface normal,
we have effectively recovered consistent luminance lev-
els for the object as well, and we use these to modulate
the textured output.

6 Texture Synthesis

Once normals for the image have been recovered, the fi-
nal step for material replacement is to synthesize new tex-
ture. We use texture synthesis based onjump maps[25].
While jump map-based texture synthesis produces lower
quality textures than alternate techniques, it is the fastest
known method for synthesizing textures on surfaces.
Thus, users can interactively experiment with different
textures, or texture orientations or scales.

A jump map is a parallel image to a texture which
records for each pixel a small set of similar pixels within
the image. Texture is produced from a seed point by iter-
atively copying pixels from the input to the output. Occa-
sionally, or near input image boundaries, a jump is made
using the jump map, and copying proceeds instead from
the jump destination. On surfaces, the method is simi-
lar, walking across vertices instead of pixels. To acco-
modate the irregular topology and sampling of surfaces,
each edge is individually mapped into a 2D texture space
offset according to a supplied orientation field and texture
scale. Instead of moving one pixel in the input, moving
across vertices moves the corresponding offset.

We adapt jump map-based texture synthesis for ma-
terial replacement in images by treating the image se-
lection as a surface with varying edge lengths between
pixels. Since the synthesis procedure considers only the
immediate neighbours when synthesizing a given pixel,
we need not have a physically-realizable surface; this is
a distinct advantage over Textureshop, whose Graphcut-
based approach required the recovery of consistent sur-
face patches. The remaining question is how to compute
texture space offsets between neighbouring pixels.

We assume that at each pixel the user has specified a
scale,sp, as the number of texture pixels per target image
pixel, and an angleθp, which specifies the orientation of
the texture with respect to the target image. These are
typically specified globally, but may be gradually varied
across the image as well [26] if desired. From the pre-
vious step, we have a recovered normalnp at each pixel
as well. On each edge between neighbouring pixels, we
first compute average normals, scales, and orientations,
n, s, θ . We approximate the local surface by a plane
whose normal isn. As shown in Figure 3, the length
of ds, the distance on the surface (equivalently, in texture
space) between these two pixels, can be derived via sim-
ilar triangles. The direction ofds is given by projecting
the image-space offset between the pixels (di) onto the
approximating plane. Thus, we have:

ds =
s||di ||
||nz||

di − (ndi)n
||di − (ndi)n||

(1)

Finally, we construct a basis for texture space by rotat-
ing the image axes byθ (the user-specified orientation),
and projecting them onto the approximating plane. The
3D vectords is finally projected into this basis to get the
texture space offset. The resulting graph of offsets is not
necessarily coherent, but as shown in the next section, it
is sufficient to give good synthesis results.

Texture synthesis produces texture coordinates at each
pixel of the object. We render a final result by splatting a
small texture patch at each pixel, both filtering the texture
and obscuring discontinuities. As in Textureshop, nor-
mals may also be recovered for the source texture, and
splatted together with the recovered object normals for
bump mapping. Finally, the result is modulated by the
recovered luminance to preserve the object’s shading.

7 Results and Discussion

All of the results presented in this paper took about a
minute or two to generate, mostly for user interaction.
Selection occurs in real-time with each brush stroke, nor-
mal recovery takes up to five seconds, and synthesis and
rendering takes up to two seconds; both operations scale
linearly with the number of pixels, while normal recovery



Figure 4: Selecting and retexturing multiple objects is
fast and efficient with our system.

Figure 5: Jump map-based texture synthesis allows
for easy experimentation with different textures, texture
scales, and texture orientations. As shown in the video,
each image is produced with virtually no lag time.

also depends on the number of clusters in the Gaussian
mixture. These timings, as well as the real-time captures
in the video, are on a 1.8 GHz G5 machine. As shown
in Figures 1, 4 and 5, as well as the accompanying video,
the speed of the system easily allows for selecting mul-
tiple objects from a scene, using multiple textures, and
varying texturing parameters. Updates to the result occur
interactively, usually under a second.

We demonstrate results of material replacement on ob-
jects with albedo changes in Figures 2 and 6. Note that in
the dancing image (Figure 6, bottom), the high-frequency
colour changes in the shirt of the left dancer are inaccu-
rately treated as a single colour cluster by our system,
producing some brightness artifacts, but the result is still
quite convincing. With Textureshop, the recovered lumi-
nances are incorrect (Figure 7).

The main limitations of our system are shown in Fig-
ure 8. Clustering can succeed even on high frequency
albedo changes, as with the patterned shirt example, but
the resulting clusters are not coherent enough to provide
good shape-from-shading results. Thus, the luminance

Figure 6: Material replacement with albedo changes.

Figure 7: Results using Textureshop-style recovery. The
textures are severely distorted and the luminance incor-
rect in areas with different albedo.

Figure 8: Material replacement failures. Left to right:
original image, colour clusters, recovered brightnesses.



recovery is incorrect, revealing the original pattern in-
stead of removing it.

A more subtle problem can cause the clustering itself to
fail. In the dish cloth example, which uses 3 clusters, the
shading variation outweighs the albedo changes, so pixels
with different albedo are incorrectly clustered together,
causing later steps in the algorithm to fail. Clustering in
different colour spaces can help, but no one colour space
is good over a wide variety of images. We expect a more
fruitful approach is for the user to provide some sort of
extra information to make the recovery more accurate.
From our results, simply specifying the expected number
of colour clusters is not sufficient (as using too many clus-
ters can lead to the same problem, we leave the number
of clusters as a user parameter).

Another limitation of our approach is that since nor-
mals are examined locally, two parts of the surface at
varying depth but with similar normals will be given tex-
ture at the same scale, and may appear to be at the same
depth after material replacement. This can be fixed by
manually altering the scale of the texture appropriately,
but a more automatic solution would be preferable.

8 Conclusion

We have presented a new system for interactive material
replacement. Our novel normal recovery procedure reli-
ably estimates the normals of diffuse objects even with
albedo changes, broadly extending the utility of mate-
rial replacement techniques. Integrating Lazy Snapping
into the system vastly reduces the tedium of object selec-
tion. Jump map-based texture synthesis produces slightly
lower-quality textured results, but produces results inter-
actively, allowing for real-time texture brushing and very
quick overall texturing. By achieving interactive speed
for all elements of the system, we remove the perceived
penalty for experimentation with different selections, tex-
tures, and rendering options.
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