
Designing a Unified Programming Model for
Heterogeneous Machines

Michael Garland
NVIDIA

Email: mgarland@nvidia.com

Manjunath Kudlur
NVIDIA

Email: mkudlur@nvidia.com

Yili Zheng
Lawrence Berkeley National Lab

Email: yzheng@lbl.gov

Abstract—While high-efficiency machines are increasingly em-
bracing heterogeneous architectures and massive multithreading,
contemporary mainstream programming languages reflect a
mental model in which processing elements are homogeneous,
concurrency is limited, and memory is a flat undifferentiated
pool of storage. Moreover, the current state of the art in pro-
gramming heterogeneous machines tends towards using separate
programming models, such as OpenMP and CUDA, for different
portions of the machine. Both of these factors make programming
emerging heterogeneous machines unnecessarily difficult.

We describe the design of the Phalanx programming model,
which seeks to provide a unified programming model for hetero-
geneous machines. It provides constructs for bulk parallelism,
synchronization, and data placement which operate across the
entire machine. Our prototype implementation is able to launch
and coordinate work on both CPU and GPU processors within
a single node, and by leveraging the GASNet runtime, is able to
run across all the nodes of a distributed-memory machine.

I. INTRODUCTION

Over the last 5 years, mainstream machines have quickly
evolved to embrace heterogeneous architectures and intra-
processor parallelism. This evolution has been driven by the
search for improved computational throughput, but even more
importantly, it has been driven by the need for improved
energy efficiency. Computers containing both multicore CPUs,
which are moderately multithreaded, and manycore GPUs,
which are massively mulithreaded, are now commonplace.
And this trend is apparent across a broad range of computing
devices, from mobile phones and tablets up to the largest
supercomputers.

Programming systems have not kept pace with this rapid ar-
chitectural evolution. Contemporary mainstream programming
languages largely still reflect a mental model in which process-
ing elements are homogeneous, concurrency is limited, and
memory is a flat undifferentiated pool of storage. While broad-
based languages such as Java and now C++11 do provide
standard constructs for concurrent threads, they are focused
on managing small pools of independent threads and do not
really address the needs of massive multithreaded processors
and provide no model for managing heterogeneous processors.
NVIDIA’s CUDA platform pioneered a programming system

This research was, in part, funded by the U.S. Government. The views and
conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or
implied, of the U.S. Government.

for massive parallelism and heterogeneous processors, but is
generally combined with other layers such as OpenMP for
programming multicore CPUs. Today’s large-scale machines
consist of potentially many nodes each containing a hetero-
geneous collection of processors. It would not be uncommon
to program such machines in a mixture of three programming
models: CUDA for GPUs, OpenMP for CPUs, and MPI for
inter-node communication.

In this paper, we describe the design of the Phalanx
programming model. Our goal is to develop a unified pro-
gramming model for heterogeneous machines, in both single
and multi-node configurations. It provides a simple asyn-
chronous task model providing constructs for launching large,
structured collections of cooperating threads, thus supporting
both coarse-grained task parallelism and fine-grained thread
parallelism. This generalizes the kernel model developed by
CUDA and, unlike constructs in many other systems which
focus on launching single threads, is well-suited to controlling
modern GPUs. Alongside this control model, Phalanx provides
a PGAS-like memory model that presents a global address
interface even on distributed machines. This is coupled with a
hierarchical model of “places” that permits programs to target
data & task placement at particular parts of the machine while
also querying and reasoning about the location of data. The
implementation of these constructs is built upon a convention
for managing platform heterogeneity via information embed-
ded in the type signature of functions.

We have built a prototype implementation of this pro-
gramming model as a C++ template library. It requires no
compiler support other than the language extensions for GPU
computing provided by the standard CUDA C++ compiler. It
is built on top of the CUDA, OpenMP, and GASNet runtimes
for running code on GPUs, CPUs, and distributed nodes,
respectively. Since it is built as a library, it interoperates
cleanly with other existing code already built upon these
underlying platforms. Thus, while it is meant to provide a
convenient unified programming model, it can also leverage a
substantial body of existing code.

II. ARCHITECTURAL TRENDS

Traditional processors have for many years focused on trans-
parently scaling sequential performance through a combination
of clock frequency scaling, sophisticated caches, superscalar
execution, and speculation. Modern architectures have reached

SC12, November 10-16, 2012, Salt Lake City, Utah, USA
978-1-4673-0806-9/12/$31.00 c©2012 IEEE

the point of diminishing returns where additional exploitation
of instruction-level parallelism imposes an unsustainably high
energy cost and have moved to expose parallelism explicitly.
Parallel processor architectures have displaced traditional se-
quential machines across the whole gamut of machines, from
mobile phones to supercomputers.

Modern GPUs have been at the leading edge of this
architectural movement towards explicit parallelism. Tradi-
tional architectures, exemplified by modern CPUs, are latency-
oriented processors whose design is focused on making single
sequential threads execute as quickly as possible. In contrast,
GPUs have evolved as throughput-oriented processors [1]
whose design is geared towards maximizing the aggregate
amount of work they can complete in a given time frame.

Heterogeneous machines, which provide both latency-
oriented and throughput-oriented processors, are essential for
energy-efficient computing [2]. Throughput-oriented proces-
sors can deliver high performance on parallel workloads using
comparatively little energy. Latency-oriented processors, on
the other hand, can execute sequential code much more quickly
by leveraging instruction-level parallelism aggressively, but at
the cost of higher energy consumption. As any real application
consists of a mix of parallel and sequential tasks, it is advan-
tageous to provide both kinds of cores in search of energy
efficiency.

The trajectory of energy efficient architecture raises three
important concerns with which programmers must be equipped
to cope. First, machines are becoming heterogeneous which
represents a departure from the fundamentally homogeneous
design of current programming systems. Second, throughput-
oriented processors employ massive multithreading to hide
latency, which creates a level of concurrency for which most
single-node programming systems are unprepared. Finally, on-
chip memory hierarchies are becoming deeper while off-chip
memory bandwidth is becoming more precious.

III. PHALANX PROGRAMMING MODEL

Phalanx is a programming model whose goal is to make
programming machines such as those we have just described
both simpler and more uniform. It is an efficiency-oriented
model, providing relatively low-level constructs that allow a
programmer to map an explicitly parallel program efficiently to
a heterogeneous machine. Phalanx aims to provide a suitable
substrate for higher level abstractions for performance porta-
bility and productivity, in the style of Thrust [3] for example,
but does not address those goals itself. The Phalanx model
itself is simply concerned with providing a homogeneous
notation for programming heterogeneous machines with rich
memory hierarchies.

We embed the Phalanx model in C++ as a library comprised
of a collection of templated types and generic functions.
While we believe that the key ideas of Phalanx could be
realized in other languages, this choice avoids the need for
any special compiler support and allows Phalanx programs to
easily interoperate with a great deal of existing code.

In the sections that follow, we describe the main components
of the Phalanx programming model. Section IV provides fur-
ther information on how our prototype library is implemented.
In reading the following description, it is important to know
that all Phalanx interfaces are contained within a Phalanx-
specific name space (e.g., phalanx::place in C++ syn-
tax). In describing the model, we will omit the phalanx::
qualifier where there is no ambiguity; this corresponds to
incorporating a C++ using namespace phalanx; dec-
laration in the program.

A. Heterogeneous Machine Model

The machines that this work targets feature both heteroge-
neous collections of processors and rich memory hierarchies.
Using such machines efficiently often requires programmers
to reason about the structure of the machine on which their
programs are running. For instance, knowing the details about
proximity of a memory in which data lives and the processors
on which tasks are running allows the programmer to place
computation close to the data.

Phalanx exposes the structure of the machine to the pro-
grammer through objects of type phalanx::place. A
place is a hierarchical data structure that organizes the
processors and memories within the machine into a tree. Indi-
vidual processors are placed at the leaves of this tree. Internal
nodes represent logical groups of processors. Physical memory
structures co-located with one or more processors are attached
to the nodes representing those processors. This hierarchical
structure provides a simple means of reasoning about locality.
A single processor leaf sees a chain of memories above it
along the path to the root. Each successive level represents a
memory that is progressively “further away”, as measured by
a system-defined metric such as latency or access energy.

The place describing the entire machine is assembled
by the Phalanx runtime during initialization and is provided
to the program. Subsequent calls to Phalanx interfaces for
creating tasks and allocating memory require place-valued
arguments indicating where the new task/data is to be located.
The hierarchical nature of places permits the program to be
more or less specific about the placement of tasks and data, at
the discretion of the programmer. Launching a task on a place
naming the entire machine leaves the precise placement of the
new task at the discretion of the runtime, whereas specifying
a place containing a single processor mandates that it must
be placed there. Thus, the expert programmer can specify the
precise placement of tasks and data for best performance while
others are free to leave these decisions in the hands of the
system.

Phalanx provides a set of interfaces to initialize, query,
traverse, and filter place trees. We summarize three salient
functions here, but this is not meant to be a complete descrip-
tion of the interface. Figure 1 shows a simple corresponding
example. The physical machine consists of a dual socket, 4-
core x86 system coupled with 2 GPUs. The GPUs themselves
consist of 7 and 14 streaming multiprocessors (SMs). Each of
the main CPUs and the two GPUs have an associated memory.

x86(4) x86(4)

mem0

sm(7)

mem1

sm(14)

mem2

2 socket x86

GTX 460 GTX 470

(a) A machine
x86 x86 mem0 sm mem1 mem2 sm

(b) get_global_machine

mem0 mem1 mem2

(c) slice_by_type<memory>

sm sm

(d) slice_by_isa<sm>

Fig. 1: An example machine (a) containing two 4-core CPUs and two GPUs with 7 and 14 SMs, respectively. It is represented
in Phalanx as a place (b) and can be subsequently filtered in different ways (c–d).

A NUMA-aware runtime might choose to present the CPU’s
storage as one memory per NUMA domain rather than the
single memory shown here.

When a Phalanx program is initialized, it obtains an object
representing the root of the hierarchical machine.

int main(int argc, char **argv)
{

main_task self = initialize(argc, argv);
place M = get_global_machine(self);
...

}

The program is then able to sub-select various pieces of
this tree according to different criteria. It may, for instance,
construct a tree containing only nodes of a given category:

place rams = slice_by_type<memory>(M);

where the category is one of memory or processor. It may
also construct a tree containing only processors implementing
a specific ISA:

place gpus = slice_by_isa<sm>(M);

where the ISAs used in our examples are x86 (for the CPU)
or sm (for the GPU).

B. Task Model

As in many parallel programming systems, Phalanx pro-
grams are expected to create and execute a potentially large
number of asynchronous tasks. However, unlike other models
with the exception of those influenced by CUDA, an individual
Phalanx task can be composed of many threads. The collection
of threads forming a task can also be structured hierarchically.

The hierarchical structure of a Phalanx task is described by
values of type phalanx::domain<Policy,SubDom>.
The Policy argument in this templated type specifies the
scheduling policy used at this level, of which there are
currently two options:

• streaming_group: A group consisting of indepen-
dent sub-groups, which may be executed in any order, in
parallel or sequentially.

• parallel_group: Subgroups are permitted to syn-
chronize and must be scheduled so that unblocked sub-
groups can make progress.

The SubDom type defines the organization of the subgroups
of this domain.

The base domain type is phalanx::thread<P>, which
signifies a single thread compiled to run on processors of type
P (e.g., x86 or sm). We can then, for instance, describe a
domain of completely independent GPU threads:

domain<streaming_group<thread<sm>>>

or a set of parallel thread blocks in the style of CUDA’s kernel
model:

domain<streaming_group,
domain<parallel_group, thread<sm>>>

Note that domains defined in this manner are homogeneous:
every level of the task hierarchy is uniform in structure. Since
domains are normal C++ types, the program can use normal
C++ typedef declarations to create more convenient names
for common domain organizations.

Phalanx adopts a convention whereby functions that are task
entry points always take a domain-valued object as their first
parameter. Thus, both the structure of the task hierarchy and
the target processor platform are directly encoded in the type
signature of the function. By convention, we refer to these
values as self, since they always name the executing task.
For hierarchical tasks, these objects represent the root of the
task structure and they export a set of interfaces for traversing
and partitioning the threads of the task. The purpose of task
objects is twofold. First, the hierarchical structure of tasks
provides the mechanism for expressing the scope for shared
resources, primarily shared storage and synchronizers. Second,
it provides a handle for explicitly naming the set of threads
participating in a collective operation.

Phalanx executes tasks in a SPMD fashion. Every thread in
a task begins executing at the same entry point and receives
the same parameters. The domain object passed as the first
parameter provides a collection of methods with which threads
can determine their position in the task and cooperate with
each other. This interface includes the methods:

• size() and index() to compute the number of sub-
groups and the calling thread’s position, respectively;

• subdomain() returns the subgroup containing the call-
ing thread;

• scratchpad() to obtain a pointer to shared scratchpad
memory; and

• barrier() to synchronize all threads belonging to the
group.

Only domains of type parallel_group provide scratchpad
and barrier methods since only they permit communication
amongst their constituent threads.

Tasks are created by the phalanx::async construct,
which has the following form:
event e = async(who, machine, shape)

(task_entry, ...);

This launches a task whose entry point is a function named
task_entry. The shape parameter is an object of type
domain, which specifies both the structure of the task, and
the resources required at different level of the task hierarchy.
Scratchpad memory that will be shared by a group of threads
is an example of a resource that can be requested as a part
of the shape parameter. Phalanx provide utility functions
streaming() and parallel() to simplify the construc-
tion of the shape parameter. For instance, the following code
constructs N streaming groups of threads, each containing
M threads each. Further, each thread group will share a
scratchpad memory of P bytes.
streaming(N, scratchpad(P),

parallel(M, thread<>()))

The shape along with any values passed in place of the
ellipsis (...) will become its parameters. The parameter
who is a domain naming the thread(s) performing the task
launch, and is used to distinguish between tasks launched by
a single thread and collective launches by a set of threads.
The machine parameter is a place indicating where the
task is to be mapped. For aggregate places, the threads of the
task may be distributed at the discretion of the runtime. The
domain parameter specifies the shape of the parallel task to
be launched. An event object is returned by async, and this
serves as a handle to the parallel task that has been launched.
The handle can be passed to the phalanx::wait function
that blocks until the corresponding task completes or as a
precondition to other async-like functions. For example, the
async_after interface:
event f = async_after(who, e, m, s)

(task_entry, ...);

makes the launch of the new task conditional on the com-
pletion of the event e. Declaring dependencies explicitly in
this fashion, rather than waiting directly on an even in the
calling thread, is essential for scalability. It allows the runtime
to decouple waiting for task completion from the sequential
execution of the calling thread and implement waiting effi-
ciently. Our CUDA backend, for instance, takes advantage of
this information to avoid involving the host CPU in waiting
for a chain of dependent GPU tasks to complete.

C. Memory Model
Phalanx provides a PGAS-like memory model to

the program. Memory locations are represented by a

phalanx::ptr template whose definition is along these
lines:

template<typename T,
typename MemorySpace>

struct ptr {
T& get();
void put(const T&);
place place();

};

The type T is the type of the data stored in the storage location
named by the pointer. Pointers are categorized into sepa-
rate memory spaces by the MemorySpace parameter. Only
pointers within the same memory space may be compared
or subtracted to compute offets. Pointers in different memory
spaces may provide different, incompatible, implementations
of the put and get interfaces. Associating memory spaces
with pointers allows Phalanx to handle machines with seman-
tically distinct address spaces. Encoding the memory space
in the type of the pointer allows for efficient access to the
different memory types. Typical memory spaces would include
global_memory, representing global addresses spanning
multiple nodes, local_memory representing the system
memory within a single node, and device_memory rep-
resenting the GPU address space within the local node.

The ptr class also provides a place() interface function
for querying the location of the storage. This returns to the
caller a value of type phalanx::place naming the location
of the memory in the machine. This permits programs to
allocate additional storage near this data, launch tasks near this
data, or determine whether the memory is near the processor
running the current task, among others. Program logic of
this sort can thereby use information about the location of
data to manage both task and data locality. The Phalanx
memory model has been designed at this low-level so that
it can interoperate easily with the host language. Phalanx
pointers, with the exception of the place interface, behave
exactly like normal pointers. The put and get methods are
generic interfaces to dereference the pointer. Specializations
of phalanx::ptr for specific memory spaces can provide
implementations that can be mapped to single instructions.
Thus for example, these pointers can, where appropriate,
support dereferencing via the standard *ptr syntax.

Memory management in Phalanx is performed through
fairly standard interface routines shown here :

template<typename Domain,
typename T,
typename MemorySpace>

ptr<T, MemorySpace>
allocate(const Domain& who,

place M, size_t count);

template<typename Domain,
typename T,
typename MemorySpace>

void deallocate(const Domain& who,
ptr<T, MemorySpace>& Pointer);

The who parameter informs the runtime about collective allo-
cations performed by a group of thread(s) versus allocations
performed by a single thread. The routines also takes the
name of the location where memory allocation/deallocation
is requested. The location can be a specific memory place,
or a slice of the machine tree, in which case the runtime
allocates storage in one or more of the memories present in
the tree. Phalanx presents an asynchronous interface for data
movement between memories. The phalanx::copy is the
primary data movement interface:

template<typename Domain,
typename T,
typename MemorySpace1,
typename MemorySpace2>

event copy(const Domain& who,
ptr<T, MemorySpace1>& Pointer1,
ptr<T, MemorySpace2>& Pointer2,
size_t count);

copy returns a phalanx::event object, which can be
passed to async_after or wait functions. With this func-
tionality, programmers can build complex software pipelines
which overlap data movement and computation.

IV. PROTOTYPE IMPLEMENTATION

The programming model we have just described is designed
to be realized as a C++ template library. Moreover, it is
designed so that the mapping to underlying parallel runtimes is
both simple and efficient. We have chosen to build a prototype
implementation using CUDA, OpenMP, and GASNet for pro-
gramming the GPU, CPU, and distributed memory portions of
the machine, respectively. The programming model defines its
interface in terms of a set of generic functions and templated
types. A backend supporting a specific platform, say CUDA,
is simply a set of appropriate instantiations of these generic
interfaces.

A. CUDA Backend

The CUDA backend provides instantiations restricted in
such a way that the interface can be directly mapped
to the primitives provided by CUDA. For instance, the
index() and size() methods of thread<sm> and
domain<parallel_group, thread<sm>> will ex-
pand directly to CUDA primitives as shown in Figure 2.

Launching a function using async automatically dis-
patches to the CUDA backend if the task entry point’s first
parameter (the task type) is one of the above types. The
implementation of async in the CUDA backend simply maps
thread blocks and grids of blocks to the first available GPU on
the machine tree that is passed as the target place. Similarly,
multi-grid CTAs are mapped to two or more available GPUs
on the machine tree.

Events returned by async are implemented using the
CUDA stream and event infrastructure. For each call to
async, the backend will:

1) Create a new CUDA stream s.
2) Launch the specified kernel in stream s.

3) Record a CUDA event e in stream s.
4) Destroy stream s and return e in a phalanx::event.

This mode of stream use, namely creating and destroying
a stream on each kernel launch, deviates from the normal
CUDA idiom. However, this usage mode is supported by the
CUDA runtime and allows each kernel launch to potentially
run asynchronously from the others. The implementation of
async_after is similar, but inserts a CUDA event wait
prior to the kernel launch. The CUDA runtime will defer the
launched kernel until the provided event has occurred, and the
burden of waiting will be placed on the target GPU rather than
the host CPU.

B. OpenMP Backend

We chose OpenMP to provide the underlying runtime for
execution on multicore CPUs. Our choice is largely driven
by pragmatic concerns. OpenMP enjoys wide support in both
commercial and free compilers, and by building on OpenMP
we allow Phalanx programs to interoperate with the existing
base of OpenMP code.

The OpenMP backend uses compile-time template expan-
sion to map a Phalanx async call onto a potentially nested
sequence of omp parallel and omp parallel for
blocks. A Phalanx parallel_group is mapped to the
former while a streaming_group is mapped to the latter.
The thread<x86> type implements the leaf level of the
thread hierarchy corresponding to a single OpenMP thread.

Calling Phalanx async with a domain whose leaf level
threads are of type thread<x86> automatically dispatches
to the OpenMP backend. The OpenMP launcher maps the
entire thread hierarchy on the first multicore processor found
in the tree of places passed to the async function. In order to
manage nesting correctly, the backend’s task launcher stores
the thread array size and indices for each of the threads explic-
itly in the domain data structure and size() and index()
functions simply return these values. The barrier() in-
terface uses omp barrier to synchronize threads that are
grouped by the parallel_group scheduling policy.

In our current prototype implementation, we have chosen
not to use the task constructs introduced in OpenMP 3.0 so that
our implementation can be compiled with Microsoft’s Visual
C++ compiler. While this significantly improves the portability
of Phalanx programs, it has the unfortunate consequence that
every Phalanx task is actually synchronous since there is an
implicit barrier at the end of OpenMP’s parallel sections. This
limitation could be eliminated by using a different runtime,
such as Intel’s Thread Building Blocks (TBB), although we
would subsequently lose the ability to interoperate cleanly with
existing OpenMP-based code.

C. GASNet Backend

The Phalanx backend for distributed-memory systems is
built on top of GASNet, a widely used global address space
runtime library [4]. GASNet supports communication prim-
itives including active messages, one-sided communication
and collective operations on diverse computer architectures

template<>
struct thread<sm> {
__device__
unsigned index() const {

return threadIdx.x;
}

__device__
unsigned size() const {
return 0;

}
};

(a) Thread

template<>
struct domain<parallel_group,

thread<sm> > {
__device__
unsigned index() const {

return blockIdx.x;
}

__device__
unsigned size() const {

return blockDim.x;
}

__device__
void barrier() const {
__syncthreads();

}
};

(b) Thread array

// Grid of CTAs
template<>
struct domain<streaming_group,

domain<parallel_group,
thread<sm> > >;

// Multiple grids for multi-GPU
template<>
struct domain<streaming_group,

domain<streaming_group,
domain<parallel_group,

thread<sm> > > >;
(c) Grids of thread arrays

Fig. 2: Examples of how Phalanx domains are mapped down to CUDA primitives.

and interconnects. Our implementation of constructs such as
phalanx::async and phalanx::allocate is based on
active messages, which essentially provide a mechanism to
execute functions in a separate address space equivalent to
remote procedural calls (RPCs).

The GASNet backend is designed to work with the CUDA
and OpenMP backends hierarchically; it provides inter-node
runtime services while the CUDA and OpenMP backends
provide the intra-node runtime. A Phalanx application can use
all three backends together to express hierarchical parallelism
across the entire machine. For example, a Phalanx application
may first spawn a coarse-grained task on a remote node, which
then spawns fine-grained local CPU tasks with the OpenMP
backend and GPU tasks with the CUDA backend.

Each OS process is mapped to a Phalanx place in the
machine model, and each place is assigned a unique integer
rank from 0 to p − 1, where p is the number of processes.
A parallel_group is implemented with a team object
in GASNet, which is similar to a MPI_Communicator that
supports collective communication such as barriers. Because
threads in a streaming_group are independent by defini-
tion, they can be simply scheduled to available processors in
a round-robin fashion or in a random order without special
treatment.

Launching tasks on remote nodes is implemented by GAS-
Net active messages. Each active message has a header
containing the function pointer of a user space handler to
be executed upon message arrival and the arguments to the
handler function. As in other backends, we use C++ templates
to match function prototypes for phalanx::async and
generate stub functions for data marshaling. We first pack all
arguments into an active message and then send the active
message request through the network. After the remote node
receives the active message, it unpacks the packet to retrieve
the task information. Because there are restrictions on what

functions can be executed inside active message handlers to
prevent deadlocks, the receiver inserts the task into a queue
for later execution rather than executing it immediately. All
local and remote tasks are managed by a unified async task
queue. Each process regularly polls the task queue to execute
pending tasks. In addition, our runtime supports dynamic task
dependencies between tasks. A task is fired only if all of its
prerequisite tasks are completed.

A global address space is convenient for data sharing and
communication but is challenging to implement on distributed-
memory systems. Unlike software distributed memory systems
(DSMs) such as TreadMarks [5], which use the OS virtual
memory paging mechanism to provide a shared address space
abstraction, we take a partitioned global address space (PGAS)
approach and encode the data location in global address space
pointers and name symbols.

A global address pointer encapsulates within its
phalanx::ptr structure both a local virtual memory
address and the process ID where the local pointer is valid.
When accessing data through a global address pointer, the
overloaded dereference operator calls an underlying GASNet
function to fetch the data to a local buffer and then returns the
data in the local buffer. When allocating memory in the global
address space, the runtime first checks if the place for the
requested memory is local. If it is local, the runtime allocates
memory using regular memory management mechanism such
as malloc and new. If the requested memory is for GPU,
the runtime uses cudaMalloc to allocate the memory.
If the requested memory is on a remote node, the runtime
uses an active message to allocate memory, and the remote
node replies to the initiating node with the resulting memory
pointer.

Reading and writing data in the global address space
are provided through one-sided communication functions
phalanx::put and phalanx::get, respectively. These

operations are mapped directly onto GASNet one-sided com-
munication functions. In addition, we support non-blocking
data communication, which allows the data transfer functions
to return an event without waiting for the operation to com-
plete. The caller may then perform other work, checking for
the completion of the communication through the previously
returned event.

The global address space in Phalanx covers both CPU
memory and GPU memory in a cluster. We extended GASNet
to support moving data between two GPUs. Due to limitations
of current systems, memory transfer operations can only
be initiated from CPUs in the current prototype; however,
NVIDIA’s GPUDirect support for direct RDMA from GPU
memory may help make this limitation unnecessary in the
future. We uses active messages for moving data when the
source or the destination is on a GPU. To improve the
performance for long messages, the GASNet GPU extension
automatically pipelines the communication by overlapping
network communication and CPU-to-GPU communication.

V. EVALUATION

In order to evaluate the utility of the Phalanx programming
model and our prototype instantiation, we have implemented
a collection of common programs in our model for both
single-node and multi-node machines. We focus on relatively
simple computations with well known parallelizations. Our
goal is to assess whether our programming model permits
straightforward implementations that are reasonably efficient
and scalable. We have not attempt to produce highly optimized
implementations. While such implementations can be written
in Phalanx, the effort spent on writing them is largely a reflec-
tion of the complexity of implementing a specific algorithm on
a specific architecture rather than on the complexity of using
the programming model.

A. Single Node

Figure 3 contains a simple, but complete, example of a
Phalanx program for performing a basic SAXPY-style parallel
computation. Note that in the current prototype, the saxpy
function template must be manually expanded and annotated
with the __global__ declaration modifier to make this
program compile with the nvcc compiler for the CUDA
backend. Phalanx programs begin execution in a single thread,
and should always first initialize the runtime and obtain the
handle for the initial thread (line 13). Using this handle, the
startup thread can also obtain a place instance describing
the machine allocated to the program by the runtime (line
17). These main task and machine objects are then provided
to subsequent Phalanx interfaces. Lines 20–21 allocate the x
and y arrays, which are then initialized with std::fill.

After initial setup is complete, the code in line 26 launches
a task on an x86 CPU in the current machine. By providing
the entire machine M as the target for the launch, the program
indicates that the runtime is free to chose any x86 core in
the machine. If desired, the program can provide a more
specific target that would constrain the placement of the task.

1 template <typename Platform>
2 void saxpy (domain<streaming_group<>,
3 thread<Platform> > group,
4 float a, int n,
5 ptr<float> x, ptr<float> y)
6 {
7 int i = group.subdomain().index();
8 if (i < n) y[i] = a * x[i] + y[i];
9 }

10
11 int main (int argc , char** argv)
12 {
13 // Obtain handle for thread running main()
14 main_task self = initialize(argc, argv);
15 //
16 // Get object describing hierarchical machine
17 place M = global_machine (self);
18
19 // Allocate and initialize memory
20 ptr<float> x = allocate<float>(self , M, n);
21 ptr<float> y = allocate<float>(self , M, n);
22 std::fill(x, x+n, 1.0);
23 std::fill(y, y+n, 10.0);
24
25 // Launch on an X86 - type processor
26 event e1 = async(self, M, n)
27 (saxpy<x86>, 2.0f, n, x, y);
28 wait (self , e1);
29
30 // Launch on an SM - type processor
31 event e2 = async(self, M, n)
32 (saxpy<sm>, 2.0f, n, x, y);
33 wait(self, e2);
34
35 // Deallocate memory and end the program
36 deallocate(self, x);
37 deallocate(self, y);
38 return 0;
39 }

Fig. 3: A simple example of a Phalanx program for computing
y ← ax+ y on two n-vectors x and y.

After waiting on the completion of this task (line 28), the
program then launches a task on a GPU. Note that the async
calls are identical except for the instantiation of the saxpy
function template. In the prototype, sm typed functions and
x86 typed functions are dispatched to the CUDA backend and
OpenMP backend respectively. The saxpy function itself is
also identical for both the CUDA and OpenMP backend. This
demonstrates how the Phalanx programming model allows
the programmer to focus on mapping the parallelism using
a uniform set of interfaces rather than disparate low level
interfaces of a heterogeneous system.

As mentioned previously, our single-node prototype repre-
sents an extremely thin interface on top of the CUDA and
OpenMP runtimes. Phalanx is designed to act as a thin veneer
over the underlying platforms, and mapping of Phalanx in-
terfaces to specific platforms are all achieved through compile
time template expansions. Consequently, the runtime overhead
of using Phalanx rather than code written natively in these plat-
forms should be effectively zero. To verify this assertion, we
implemented three versions of the saxpy program: Phalanx
program in Figure 3, a native CUDA program, and a native
OpenMP program. We benchmarked their performance on a

16 million element problem using a machine comprised of an
Intel Core i7 950 CPU and two NVIDIA Tesla C2050 GPUs.
As expected, the two portions of the Phalanx program ran at
the same rate as the native CUDA and OpenMP programs.

In addition to this simple SAXPY program, we have also
implemented programs for sparse matrix-vector multiplication
(SpMV) and breadth-first search (BFS) on graphs. These are
more complex programs that solve irregular problems. Both
programs target multiple GPUs using the CUDA backend
of Phalanx. BFS, for instance, launches multiple tasks to
perform different stages of breadth first search. However, no
additional complexity was imposed by the Phalanx model,
compared to writing these programs directly in CUDA. In fact,
the hierarchical machine model and event model of Phalanx
provides a simpler abstraction compared to CUDA’s device and
stream management. However, these abstractions incurred no
runtime overhead, and the Phalanx and direct CUDA versions
achieved identical performance for both.

B. Distributed Memory

To demonstrate the scalability of Phalanx, we implemented
three important and commonly used benchmarks: (1) dense
matrix-matrix multiplication, (2) sparse matrix-vector multi-
plication, and (3) 2-D FFT. We benchmark the performance of
our Phalanx implementation on four representative distributed
memory machines described in Table I. We have chosen
these parallel algorithms because they are well known to be
scalable, thus focusing on the design and implementation of
the Phalanx programming system rather than the scalability of
the algorithms themselves.

Dense matrix-matrix multiplication computes the product of
two square n-by-n matrices

C[i, j] =
∑
k

A[i, k] ·B[k, j].

Our implementation uses the popular SUMMA algorithm [6].
The matrices are partitioned and stored in the global address
space with a 2-D block-cyclic distribution. Each Phalanx place
only stores a subset of matrix blocks but keeps a global matrix
view through which the programmer can conveniently access
any part of the physically distributed matrix. In addition,
we use C++ operator overloading to make indexing a sub-
block in the global matrix as convenient as writing subscripts
in mathematical equations. Local matrix computations are
performed with vendor-optimized BLAS libraries [7], [8],
[9], which can be easily accomplished since Phalanx is sim-
ply a C++ library. Communication is performed using bulk
data transfers performed via phalanx::copy in sub-matrix
block granularity.

Sparse matrix-vector multiplication (SpMV) computes y =
Ax where A is a sparse matrix and x, y are dense vectors. It
has low computational intensity and should be purely band-
width bound. We store sparse matrices using the compressed
sparse row (CSR) storage format. To distribute the SpMV
computation, we simply partition the matrix by rows and

1	
2	
4	
8	

16	
32	
64	
128	
256	
512	

1024	
2048	

1	 2	 4	 8	 16	 32	 64	 128	 256	 512	 1024	 2048	 4096	

Sp
ee
du

p	

Number	 of	 Cores	

IBM	 BlueGene/P	 Performance	 Speedup	

Matmul	
FFT	
SpMV	

Fig. 4: Phalanx benchmark performance on the IBM Blue-
Gene/P

1	

2	

4	

8	

16	

32	

64	

128	

256	

512	

1024	

1	 6	 12	 24	 48	 96	 192	 384	 768	 1536	 3072	

Sp
ee
du

p	

Number	 of	 Cores	

Cray	 XE6	 Performance	 Speedup	

Matmul	
FFT	
SpMV	

Fig. 5: Phalanx benchmark performance on the Cray XE6

distribute them evenly across the nodes. To minimize inter-
node communication, we replicate the vector x on every place
over the global address space.

The 2-D Fast Fourier Transform (FFT) is another widely
used numerical method for many applications. We use the
classical row-column multi-dimensional FFT algorithm, which
performs 1-D FFT along each of the dimensions in succession.
Because the array is partitioned and distributed on different
processors, we must transpose the array globally after each
local FFT phase to make the data for the next FFT phase
local and contiguous. Array transpose operations require all-
to-all communication patterns that are implemented by non-
blocking data transfer functions. Local FFTs are performed by
the FFTW library [10] for CPU and by the CUDA FFT library
for GPU.

Figures 4, 5, 6 and 7 summarize the weak-scaling perfor-
mance of our benchmarks on the representative distributed-
memory machines, where we increase data size in proportion
to the core count. The graphs show speed-up over sequential
performance. Table II shows the corresponding absolute per-
formance in GFLOPS for the smallest and largest machine
configurations for each platform.

Matrix multiplication performance scales well on all ma-
chines. It also demonstrates the best scaling across all bench-
marks, since it is an inherently very scalable operation, per-

System Intel Infiniband Cluster Cray XE6 IBM Blue Gene/P Cray XK6

Processor Intel Xeon X5530 AMD Opteron 6172 IBM PowerPC 450 NVIDIA Tesla X2090
Clock rate 2.4 GHz 2.1 GHz 0.85 GHz 0.65 GHz
Execution units per NUMA domain 4 cores 6 cores 4 cores 16 multiprocessors
NUMA domains per node 2 (2 sockets) 4 (2 sockets) 1 (1 socket) 1 (1 socket)
Execution units per node 8 cores 24 cores 4 cores 16 multiprocessors
Peak double precision throughput per node 84.8 GFLOPS 201.6 GFLOPS 13.6 GFLOPS 665 GFLOPS
Memory per node 24 GB DDR3-1066 32 GB DDR3-1066 2 GB DDR2 6 GB GDDR5
Peak memory bandwidth per node 25.6 GB/s 25.6 GB/s 13.6 GB/s 177 GB/s
Compiler Intel C/C++ 11.1 PGI 11.3 IBM XLC for BlueGene CUDA 4.1
Math library Intel MKL 10.2 Cray Scientific Library 10.5 IBM ESSL CUDA BLAS/FFT
Interconnect type Infiniband 4X QDR Gemini 3-D Torus 3-D Torus and Collective Gemini 3-D Torus
Peak interconnect bandwidth per direction 32 Gb/s 66.4 Gb/s 3.4 Gb/s 66.4 Gb/s

TABLE I: The distributed-memory machines used in our experiments. Our experiments on the Cray XK6 perform their
computations on the GPU, and use the CPU—a 16-core AMD Opteron 6274—for runtime services such as data communication.

1	

2	

4	

8	

16	

32	

64	

128	

256	

512	

1	 2	 4	 8	 16	 32	 64	 128	 256	 512	

Sp
ee
du

p	

Number	 of	 Cores	

Intel	 Nehalem	 w.	 Infiniband	 Performance	 Speedup	

Matmul	
FFT	
SpMV	

Fig. 6: Phalanx benchmark performance on the Intel Xeon
(Nehalem) cluster with Infiniband

0.5	

1	

2	

4	

8	

16	

32	

64	

128	

1	 2	 4	 8	 16	 32	 64	 128	 256	

Sp
ee
du

p	

Number	 of	 GPUs	

Cray	 XK6	 Performance	 Speedup	

Matmul	

FFT	

SpMV	

Fig. 7: Phalanx benchmark performance on the Cray XK6

forming O(n3) operations with only O(n2) data accesses. This
experiment shows that our prototype Phalanx implementation
has relatively low runtime overheads, thus enabling intrinsi-
cally parallel algorithms to scale well.

For FFT, each Phalanx place is mapped to a CPU core and
communicates to each other through the phalanx::copy

Performance in GFLOPS

System MatMult 2-D FFT SpMV

IBM BlueGene/P 2.45 – 3030.61 0.168 – 155.82 0.05 – 5.52
Cray XE6 6.48 – 4228.65 0.37 – 187.22 0.29 – 6.35
Infiniband Cluster 9.39 – 3008.13 0.51 – 139.0 0.22 – 14.10
Cray XK6 170.47 – 9140.50 0.31 – 32.37 0.25 – 4.86

TABLE II: Benchmark performance across platforms tabulated
as a range from smallest to largest machine configurations.

function. The underlying runtime automatically uses shared
memory for communication when two places are on the
same physical node. The all-to-all communication in FFT is
bound by network bisection bandwidth. Nevertheless, FFT
performance also scales reasonably well on all machines,
showing that the communication primitives in Phalanx are
performing well.

SpMV scales well for small core counts, but scales less well
at larger core counts. This is because our current implemen-
tation copies the vector data from the master thread to other
threads sequentially. This sequential data distribution quickly
becomes the scaling bottleneck due to the low computational
intensity of SpMV. This limitation can be solved by incorpo-
rating broader support for efficient collective communication
primitives, such as broadcast and reduction, into a future
implementation of Phalanx.

VI. RELATED WORK

The primary goal of Phalanx is to provide a single-source
model for programming heterogeneous machines where all
portions of the program are written using the same common
notation. A number of other systems have adopted similar
goals and can be broadly grouped into three categories. First
are the directive-based systems [11], [12], [13], [14] which
augment an existing base language (usually C or Fortran)
with extra-linguistic directives to be interpreted by a custom
parallelizing compiler. The second category, exemplified by

Thrust [3], provides library interfaces that abstract the details
of the underlying machine. The systems in both of these two
categories emphasize performance portability, a goal which
they achieve by providing a restricted interface to the program-
mer that hides machine-specific details. Phalanx falls into a
third category which aims to provide low-level constructs that
have a uniform interpretation on different machines while not
hiding machine-specific details.

Phalanx employs a memory model closely related to the
PGAS (Partitioned Global Address Space) model used by
languages such as UPC [15], Titanium [16], Chapel [17],
X10 [18]. The Phalanx memory model generalizes the PGAS
approach as found in these languages by providing a hier-
archical rather than flat model of places and by adopting
a model of memory spaces that extends beyond the usual
global/local dichotomy. The hierarchical place trees developed
in Habanero-Java [19], [20] are the most closely related
memory model to our own. HPTs include limited support for
GPUs but focus instead on higher level constructs such as array
distributions and automatic data movement. Sequoia [21], [22]
also provides a strong hierarchical model of memory, but
imposes a relatively restrictive execution model in order to
enable compile-time scheduling of task placement and data
movement.

Many programming systems provide related constructs
for creating new asynchronous tasks variously named
spawn [23], [24], begin [17], and async [18], [19].
Runtime models such as ParalleX [25] reflect the kind of
asynchronous task model that Phalanx expects to be provided
by a runtime system. Phalanx departs from this existing
practice in emphasizing the bulk nature of task creation. Rather
than constructs oriented towards creating a single thread at a
time, it provides constructs oriented towards launching large,
hierchically structured collections of threads.

Mechanisms for managing heterogeneity in the language are
relatively less common. Phalanx embeds information about
the intended processor platform in the type of its function
(e.g., via thread<sm> or thread<x86>). Thrust [3] uses
a broadly similar approach, using special “tag” parameters to
denote target platforms in the parameter list of its internal
interfaces. CUDA [9] decorates functions with __host__,
__global__, and __device__ modifiers. These serve a
similar purpose, but do not become part of the type signature
of the function. OpenCL needs no such mechanism because it
strictly separates the host and kernel languages and hence the
host and kernel programs.

VII. CONCLUSION

We have presented the design of the Phalanx programming
model, and briefly described the techniques we have used
in building a prototype implementation. Phalanx provides a
task model built around hierarchically structured collections
of threads and hierarchical representations of the machine. Its
hierarchical organization of threads provides a natural scoping
mechanism for shared resources, such as memory and barriers,
and its hierarchical machine model allows programmers to

control the placement of tasks and data at a granularity of
their choosing. Phalanx also introduces a scheme for managing
processor heterogeneity by statically embedding information
about the target platform in the type signature of the program’s
functions.

Phalanx is designed so that it can be embedded in C++. The
only compiler support it requires is provided by NVIDIA’s
widely available CUDA compiler. It requires only a very thin
interface on top of standard runtime components, which in
the case of our prototype are CUDA, OpenMP, and GASNet.
Consequently, the runtime overhead of using Phalanx is neg-
ligible compared to programs using the underlying runtimes
directly, and Phalanx programs can freely interoperate with
such code as desired. Finally, we have shown that this model
can be used to program both single-processor, shared memory
and multi-node, distributed memory machines.

While the current incarnation of Phalanx is already a useful
programming system, there are a number of directions in
which future work could improve both the programming model
and its implementation. Our prototype design is fundamentally
limited by the limitations of the runtimes on which it is built.
As observed in Section IV-B, our use of OpenMP results in
unnecessarily synchronous execution of asynchronous tasks.
Exploring alternatives runtimes, such as TBB, more closely
aligned with the Phalanx constructs might offer worthwhile
performance improvements. Our distributed memory experi-
ments indicate that a lack of collectives for broadcast limit
the scaling of the SpMV code. Incorporating suitable collective
operations will be an important extension of the programming
model. We have also, by design, limited the opportunities
for inter-task communication. This provides the underlying
system with greater flexibility in scheduling tasks, but a more
flexible mechanism for inter-task communication might prove
valuable.

ACKNOWLEDGMENT

This research was funded in part by the DARPA UHPC
program under contract HR0011-10-9-0008. This research
used resources of the Argonne Leadership Computing Facility
at Argonne National Laboratory, the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory, and
the National Energy Research Scientific Computing Facility
(NERSC) at Lawrence Berkeley National Laboratory, which
are supported by the Office of Science of the U.S. Department
of Energy under contracts DE-AC02-06CH11357, DE-AC05-
00OR22725, and DE-AC02-05CH11231, respectively.

REFERENCES

[1] M. Garland and D. B. Kirk, “Understanding throughput-oriented archi-
tectures,” Commun. ACM, vol. 53, pp. 58–66, Nov. 2010.

[2] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco,
“GPUs and the future of parallel computing,” IEEE Micro, vol. 31, pp.
7–17, Sep. 2011.

[3] N. Bell and J. Hoberock, “Thrust: A Productivity-Oriented Library for
CUDA,” in GPU Computing Gems, Jade Edition, W.-M. W. Hwu, Ed.
Morgan-Kaufmann, 2011.

[4] D. Bonachea, “GASNet specification,” University of California, Berke-
ley, Tech. Rep. CSD-02-1207, October 2002.

[5] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel, “Treadmarks:
Distributed shared memory on standard workstations and operating
systems,” in Proc. 1994 Winter USENIX Conference, 1994, pp. 115–
131.

[6] R. van de Geijn and J. Watts, “SUMMA: scalable universal matrix
multiplication algorithm,” Concurrency and Computation: Practice and
Experience, vol. 9, no. 4, pp. 255–274, 1997.

[7] “BLAS Home Page,” http://www.netlib.org/blas/.
[8] “Intel Math Kernel Library Reference Manual,”

http://www.intel.com/software/products/mkl/.
[9] NVIDIA CUDA C Programming Guide, NVIDIA Corporation, Apr.

2012, version 4.2. [Online]. Available: http://www.nvidia.com/CUDA
[10] M. Frigo and S. G. Johnson, “The design and implementation of

FFTW3,” Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231, 2005,
special issue on “Program Generation, Optimization, and Platform
Adaptation”.

[11] F. Bodin and S. Bihan, “Heterogeneous multicore parallel programming
for graphics processing units,” Sci. Program., vol. 17, no. 4, pp. 325–
336, Dec. 2009.

[12] S. Lee, S.-J. Min, and R. Eigenmann, “OpenMP to GPGPU: a compiler
framework for automatic translation and optimization,” in Proc. 14th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. New York, NY, USA: ACM, 2009, pp. 101–110.

[13] M. Wolfe, “Implementing the PGI accelerator model,” in Proc. 3rd
Workshop on General-Purpose Computation on Graphics Processing
Units (GPGPU ’10). New York, NY, USA: ACM, 2010, pp. 43–50.

[14] T. D. Han and T. S. Abdelrahman, “hiCUDA: High-level GPGPU
programming,” IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 1, pp.
78–90, Jan. 2011.

[15] W. Carlson, J. Draper, D. Culler, K. Yelick, E. Brooks, and
K. Warren, “Introduction to UPC and language specification,”
IDA, Tech. Rep. CCS-TR-99-157, May 1999. [Online]. Available:
http://www.gwu.edu/ upc/publications/upctr.pdf

[16] K. Yelick, P. Hilfinger, S. Graham, D. Bonachea, J. Su, A. Kamil,
K. Datta, P. Colella, and T. Wen, “Parallel languages and compilers:
Perspective from the Titanium experience,” Int. J. High Perform. Com-
put. Appl., vol. 21, no. 3, pp. 266–290, Aug. 2007.

[17] B. Chamberlain, D. Callahan, and H. Zima, “Parallel programmability
and the Chapel language,” Int. J. High Perform. Comput. Appl., vol. 21,
no. 3, pp. 291–312, Aug. 2007.

[18] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: An Object-Oriented
Approach to Non-uniform Cluster Computing,” ACM SIGPLAN Notices,
vol. 40, no. 10, pp. 519–538, Oct. 2005.

[19] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar, “Habanero-Java: The new
adventures of old X10,” in Proc. 9th Int’l Conference on Principles and
Practice of Programming in Java. New York, NY, USA: ACM, 2011,
pp. 51–61.

[20] Y. Yan, J. Zhao, Y. Guo, and V. Sarkar, “Hierarchical place trees:
a portable abstraction for task parallelism and data movement,” in
Proc. 22nd Int’l Conference on Languages and Compilers for Parallel
Computing, ser. LCPC’09. Berlin, Heidelberg: Springer-Verlag, 2010,
pp. 172–187.

[21] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y.
Park, M. Erez, M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan, “Se-
quoia: Programming the memory hierarchy,” in Proc. 2006 ACM/IEEE
conference on Supercomputing, ser. SC ’06. New York, NY, USA:
ACM, 2006.

[22] M. Bauer, J. Clark, E. Schkufza, and A. Aiken, “Programming the
memory hierarchy revisited: supporting irregular parallelism in Sequoia,”
in Proc. 16th ACM Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’11. New York, NY, USA: ACM, 2011, pp.
13–24.

[23] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An Efficient Multithreaded Runtime
System,” ACM SIGPLAN Notices, vol. 30, no. 8, pp. 207–216, Aug.
1995.

[24] C. E. Leiserson, “The Cilk++ concurrency platform,” in Proc. 46th
Annual Design Automation Conference (DAC ’09). New York, NY,
USA: ACM, 2009, pp. 522–527.

[25] H. Kaiser, M. Brodowicz, and T. Sterling, “ParalleX: An advanced
parallel execution model for scaling-impaired applications,” in Proc.
2009 Int’l Conference on Parallel Processing Workshops. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 394–401.

