
Rapid Multipole Graph Drawing on the GPU

Apeksha Godiyal*, Jared Hoberock*, Michael Garland†, and John C Hart*

*University of Illinois, † NVIDIA Corp.,
{godiyal2,hoberock,jch}@illinois.edu, mgarland@nvidia.com

Abstract. As graphics processors become powerful, ubiquitous and eas-
ier to program, they have also become more amenable to general purpose
high-performance computing, including the computationally expensive
task of drawing large graphs. This paper describes a new parallel anal-
ysis of the multipole method of graph drawing to support its efficient
GPU implementation. We use a variation of the Fast Multipole Method
to estimate the long distance repulsive forces in force directed layout.
We support these multipole computations efficiently with a k-d tree con-
structed and traversed on the GPU. The algorithm achieves impressive
speedup over previous CPU and GPU methods, drawing graphs with
hundreds of thousands of vertices within a few seconds via CUDA on an
NVIDIA GeForce 8800 GTX.

1 Introduction

Automatic graph layout algorithms convert the topology of vertex adjacency
into the geometry of vertex position. These layouts usually represent vertices as
points or icons in two or three dimensions connected by edges represented by
lines or arcs. Automatic graph drawing has many important applications in in-
formation visualization, software engineering, database, web design, networking,
VLSI circuit design, social network analysis, cartography, bioinformatics and the
organization of visual interfaces for many other domains [4]. Growth in infor-
mation technology and data processing has increased the size and complexity
of graph datasets, posing the problem of drawing large graphs with millions of
nodes that demand the consideration of new scalable parallel approaches.

Classical force directed algorithms [12, 7, 22, 9] layout graphs of hundreds of
vertices, but run in O(|V |2 + |E|) time and do not scale well for larger graphs.
Approximate force directed techniques [18, 20, 14, 13, 32] perform better, using
a multilevel approach based on a graph hierarchy, where smaller coarser graph
levels guide the initial drawing of progressively larger, finer levels of the graph
hierarchy. The class of algorithms based on linear algebra [23, 21] are even faster.
They perform best on grid-like regular graphs but can condense features on other
graph types (e.g. with many biconnected components) [19, 23, 21].

These state-of-the-art algorithms for straight line graph drawing can still run
too slow on modern graphs, e.g. six minutes for a graph of 143,437 nodes [18].
Other approaches work efficiently but with uneven layout quality across graph
type, e.g. extremely fast ACE[23] and HDE[21] methods work best only on quasi-
grids. To address both limitations, this paper reworks the general-graph quality

of approximated force directed layout into a form that can be efficiently processed
on the GPU to layout hundreds of thousands of nodes within a few seconds. Our
GPU implementation of the fast multipole multilevel method (FM3) is more
than 20× faster than the latest reported CPU version [18].

We parallelize a potential field based multilevel algorithm that uses only
multipole expansions (no local expansions) to approximate long distance forces.
This combines Barnes-Hut [3] and fast multipole methods (FMM) [16]. The
FMM approach has proven error bounds and better asymptotic complexity,
whereas Barnes-Hut is popular due to its simplicity and a low associated con-
stant factor of implementation [15]. Their hybrid enjoys good error bounds and
an O(|V | log |V |+E) time complexity with low constant factor, and yeilds high
quality layouts that represent both local and global structures well, even for
graphs deemed challenging [19].

The modern graphics processing unit (GPU) was initially designed for raster-
based videogame graphics, but its marked improvement in performance and
programmability has generated considerable interest in it as a high-performance
computing platform [27, 29]. However, GPU programming remains challenging,
and its performance relies on the ability to decompose a task into concurrent
identical data-parallel instruction threads with limited support for stacks or
recursion, and managing their access patterns to the various kinds of memory
(shared, local, CPU, etc.). The contributions of this paper are the systems-level
design and deployment of an efficient manycore graph drawing algorithm and
to show that the acceleration of multipole-based layout justifies the challenges
posed by the GPU’s architecture and programming.

The main challenge of FMM processing on a single-instruction multiple-data
(SIMD) processor (such as a GPU) is managing a shared spatial hierarchy. The k-
d tree has been a popular choice for particle simulation [8, 2] as its size complexity
is distribution independent [31], but does not map easily to the GPU’s SIMD
programming model. We combine the CPU and GPU to construct the tree,
using the GPU for fast median selection so the CPU can construct a balanced
k-d tree with O(logN) depth that keeps force calculation within O(N logN).
We traverse the structure entirely on the GPU, using an efficient “stackless”
k-d tree representation, where each node has a pair of pointers, one pointing
to the first child and the other to the next node (in pre-order traversal order).
Each processor of a data-parallel SIMD processor can efficiently traverse such a
hierarchy by simply following one of two pointers [6, 10].

2 Related Work

The Fast Multipole Multilevel Method (FM3) produces pleasing layouts in the
general case and is relatively fast [18]. It combines a multilevel spatial parti-
tioning with a multipole approximation of all pairs repulsive forces, specifically
Greengard’s FMM algorithm [16]. Our new GPU version uses only the multipole
expansion coefficients and not the local expansion coefficients to approximating
repulsive forces. We show that these multipole expansion coefficients alone are

sufficient to produce high quality layout and the added complexity of working
with local expansion coefficients is unnecessary. Our GPU implementation is
20×−60× faster than the preveious CPU implementations of FM3. Another im-
provement over the previous CPU FM3 implementation [18] is that we use a k-d
tree instead of quad tree for force calculations, motivated by GPU architecture
as elaborated in Sec. 4.1.

Our implementation achieves a speedup of 1.3× − 4× over a previous GPU
multilevel force directed graph layout method [11]. That method approximated
the all-pairs repulsive force with a center of gravity multipole acceptance criteria,
which when compared to FM3 has a larger aggregate error that can even become
unbounded for unstructured distributions [28]. Our approach’s time complexity,
O(|V | log |V |+ |E|), improves their’s, O(|V |1.5 + |E|).

Others have implemented general-purpose FMM on the GPU [30, 17]. Their
approaches differ from ours as they include all FMM steps, most of which are
unnecessary for graph drawing. Our approach utilizes the k-d tree which out-
performs their quadtree, and we focus specifically on the issue of GPU tree
construction.

3 Algorithm

Multilevel layout methods significantly reduce running times by converging to
the optimal layout in fewer iterations [18, 23, 20, 14, 13, 32]. This approach
recursively coarsens an input graph G0 to produce a series of smaller graphs
G1 . . . Gk, until the size of the coarsened graph falls below a threshold. An initial
layout is first computed iteratively for the coarsest graph Gk. The converged
vertex positions of a level i graph Gi are used as the initial vertex positions of
the next finer level i− 1 graph Gi−1, which should relax into a converged state
after a few iterations. This continues until the layout for the finest graph (the
input), G0, is obtained.

We use the multilevel method shown in Algorithm 1. The ComputeLayout
step is the most expensive with runtime complexity of O(|V | log |V |+ |E|), and
is accelerated by the GPU. The remaining functions are linear O(|V |) and com-
puted on the CPU.

3.1 Coarsening

The function CoarsenGraph coarsens by maximal independent set (MIS) filtra-
tion, which has the advantage of being simple, efficient and produces a filtration
controlled by the geometry of the graph [14, 13]. The vertex subset S ⊂ V is
an independent set of a graph G = (V,E) if no two elements of S are con-
nected by an edge. A maximal independent set filtration of G is a family of sets
V = V 0 ⊃ V 1 ⊃ . . . ⊃ V k ⊃ ∅, such that each V i is an independent set of V i−1.

Calculating optimal independent sets is a NP-Complete problem, though
an efficient 2-approximation exists. An independent set S of a set V can be
computed by repeatedly deleting a vertex v ∈ V and adding it to S and removing

Input: G = (V, E) with random initial placements
Output: G = (V ′, E) with final placements
initialization;
graph G0 ←− G;
threshold←− 50;
i←− 0;
while |V i| ≥ threshold do

graph Gi+1 ←− CoarsenGraph(Gi);
i←− i + 1

end
while i ≥ 0 do

ComputeLayout(Gi) ; /* via the GPU */

if i ≥ 1 then
InterpolateInitialPositions(Gi−1)

end
i←− i− 1

end
return G0

Algorithm 1: Overall Algorithm

all vertices adjacent to v from V, until V is empty. The set S is the desired
independent set.

3.2 Interpolation

The function InterpolateInitialPositions derives the starting positions of vertices
in Gi from the positions of vertices in the converged layout of Gi+1, using a
relaxation method [11]. Each vertex v ∈ V i is initially placed at the position
of its parent vertex v′ ∈ V i+1. Then several iterations (we used a maximum of
50) of a form of graph Laplacian move each vertex to an average of its current
position, pi, and that of its neighbors Ni,

pi =
1
2

pi +
1

deg(i)

∑
j∈Ni

pj

 . (1)

3.3 Force Calculation

For each graphGi, the function ComputeLayout iteratively calculates and applies
forces until it converges. The coarsest graph Gk typically requires 300 iterations,
but this number decays rapidly for finer graphs and in most cases the finest
graph G0 needs zero iterations to converge. The pseudocode for one iteration is
given in Algorithm 2.

3.4 Force Model

As in the force directed algorithm [12], we assume that the vertices of a graph
G(V,E) are charged particles that repel each other with an inverse-square law,

Input: G = (V, E) with initial placements
Output: G = (V ′, E) with final placements
kdTree←− constructKDTree(V)
Spawn |V | threads on the GPU ; /* Thread i calculates force on vi */

foreach thread i do
force←− calculateRepulsion(vi, kdTree)
force←− force + calculateAttraction(vi, E)
Send calculated force values to CPU in an array

end
; /* Done on the CPU to avoid global synchronization on the GPU */

forall vi do
moveVertex(vi, force)

end
return G

Algorithm 2: Force Calculation Algorithm

and the edges are springs that contract with a non-physical but effective force
[18]

F = d2 log(d/d′) (2)

where d and d′ are the actual and desired lengths of the edge.

3.5 Multipole Calculation

The most expensive step in force directed graph drawing is the all-pair repulsive
force calculations. Although the force calculations may be quite complex in the
near-field (when two vertices are very close to each other), force calculations
are well-behaved in the far-field. In particular, if a vertex is sufficiently far from
a set of charges, we may compute the aggregate effect of the charges on that
vertex, and need not resort to computing every interaction. Greengard [16] first
demonstrated how potential field based approximations can be used to find the
far-field forces using quad trees. The idea is to construct a tree based spatial
partition of particles and then evaluate multipole expansions using this tree.

Theorem 1 (Multipole Expansion) Suppose that m charges of strengths qi are
located at points zi, for i = 1 . . .m, with center z0 and |zi − z0| < r. Then for
any z ∈ C with |z − z0| > r, the potential Φ(z) induced by the charges is given
by

Φ(z) = Q log(z − z0) +
∞∑

k=1

ak

(z − z0)k
(3)

where Q =
∑
qi and ak =

∑
−qi(zi − z0)k/k. As force is the negative of the

gradient of the potential, the force that acts on a particle of unit charge at position
z is given by (Re(Φ′(z)),−Im(Φ′(z))).

Instead of summing up an infinite series for (3), only a constant number p
of terms are calculated. The resulting truncated Laurent series is called p-term

multipole expansion. We choose p = 4 as it is sufficient to keep the error of the
approximation less than 10−2 [18].

As the k-d tree is constructed, the coefficients of this multipole expansion are
calculated and stored for each node using (3). The center of a k-d tree node is
the geometric center of the rectangular region it represents, and the radius used
is the radius of a circle circumscribing this rectangular region. Each node in the
k-d tree thus maintains a collection of charges (vertices of the graph) lying in its
rectangular regions. Let G(V,E) be a graph and K be the k-d tree of the vertices
of G. Let n be a node of K with center z0 and radius r. Let {vi, v2, . . . , vk} be the
set of vertices of graph G that are contained in k-d tree node n. To calculate the
approximate repulsive force on each vertex v ∈ V located at z, K is traversed
from the root node. At a node n, if the distance between z0 and z is greater than r,
then the approximate repulsive force between v and vertices vi{i = 1, . . . , k} are
calculated using (3). Otherwise, if n is an internal node, the process is repeated
for its children, and if n is a leaf node, the exact repulsive forces are calculated.

4 GPU Implementation

4.1 Processing the K-D Tree

Unlike the more traditional quadtree used in n-body simulation, we used a k-d
tree [5]. Aluru et al.[1] has shown that the running time of adaptive FMM using
quad tree [16] depends on the particle distribution and cannot be bounded in
number of particles. In order to remedy this and guarantee O(|V |log|V |) running
time complexity, [18] uses complicated tree thinning and balancing techniques.
These techniques do not translate into efficient GPU implementation because
of the lack of recursion (no unbounded stack) and dynamic memory allocation.
Since the k-d tree is a density decomposition tree and not a spatial decomposition
tree, it does not suffer from distribution dependent running time [31].

The CUDA GPU programming model has a complex memory hierarchy and
one has to keep in mind multiple factors to achieve good performance [26]. The k-
d tree is traversed by all of the GPU threads and all the threads need the vertex
position data for near field and attractive force calculations. Thus these data
structures are passed to the GPU in texture memory, which is cached yielding
higher bandwidth from k-d tree node locality. In our implementation, the k-d tree
is constructed for the first four iterations and then for every twentieth iteration,
because it changes only slightly in each later iteration and these changes do not
significantly impact force calculations.

Fig. 1. A “stackless” k-d
tree pre-threaded with first
child (blue) and next neigh-
bor (red) pointers.

Traversal Stackless traversal of the k-d tree on the GPU is achieved by a
structure shown in Fig. 1 Each node of the tree has two pointers. The blue
(success) pointer indicates its first child whereas the red (failure) pointer points
to its next neighboring node. This tree threading allows the streaming SIMD
GPU processing to parse a hierarchical data structure efficiently [6, 10]. The
data parallel SIMD architecture of the GPU requires that when control flow
reaches a condition, if some processors follow one side of the condition and the
rest of the processors follow the other side of the condition, then all of the
processors need to evaluate both sides of the condition, zeroing out the result of
the side not used by each processor. Tree threading allows the processors instead
to simply follow one of two pointers, replacing conditional control flow with data
indirection which is fully supported by the GPU.

Construction A k-d tree is constructed recursively. Each node of a k-d tree
divides the set of vertices it represents V, into two equal sets by splitting along
a chosen dimension. (In our implementation, the splitting dimension alternates
between the two axes.) This bisection is achieved by a radix selection algorithm
[24] whose worst case time complexity is O(|V |). The process of finding the
median and splitting the set of vertices is applied recursively until a node has less
than threshold number of vertices (four, in our implementation). The multipole
expansion coefficients from (3) of each node are calculated as the k-d tree is
constructed. This median splitting approach generates a balanced k-d tree in
O(|V | log |V |) time.

The radix selection algorithm is faster on the GPU for arrays of large size.
In our configuration, the crossover array size, for which the GPU radix selection
is faster than a well tuned CPU implementation, is 50,000, and we use the CPU
for smaller arrays. We implemented radix selection using efficient GPU scan
primitives [29] (which have also been used for GPU radix sort [25]).

4.2 Radix Selection with Prefix Scan

Radix select is the selection analog of the radix sort algorithm. It is recursive
and selects the key (vertex coordinate in our case) whose rank is m, from an
array A[1 . . . n] of n keys. The array is split at position s, into two sub-arrays
based on the most significant bit: A[1 . . . s] contains all keys with 0 as the most
significant bit, and A[s+ 1 . . . n] contains all keys with 1 as the most significant
bit. Then the next significant bit is considered. This goes on recursively until
the key with rank m is found.

To carry out the split at each level of recursion in parallel, each thread needs
to copy a different input key A[i] to the split array. The address of each key
A[i], is the number of keys in A[1 . . . i − 1] whose most significant bit is 0. The
array of these counts is called the prefix sum of A, denoted here as B[1 . . . n]
such that B[i] =

∑
j<iA[j]. We compute this prefix sum on the GPU using an

efficient O(n) CUDA prefix scan implementation [29]. This work-efficient scan
of n elements requires two passes over the array: reduce and down-sweep. Each

requires log(n) parallel steps. The amount of work is cut in half at each step,
resulting in an overall work complexity of O(n).

4.3 Compressed Sparse Row Representation

We use a compressed sparse row (CSR) format, essentially a sparse matrix data
structure [29], for representing the edges of the graph in GPU texture memory.
It avoids conditional statements and thus makes the implementation fast. Let i
be a vertex of graph G such that i has k edges (i, j1), (i, j2)...(i, jk). Then the
graphs adjacency list is represented by 2 arrays:

1. Edge-value: For each vertex i, this array stores vertices {j1, j2...jk} i.e. the
adjacency list of i.

2. Edge-index: Edge-Index[i-1] and Edge-Index[i] store the beginning and end-
ing of the adjacency list of vertex i.

For each vertex i, a GPU processing thread uses this CSR representation to
calculate the attractive forces due to its incident edges. This parallel computation
is not perfectly load-balanced as the work done by each thread depends on the
degree of the vertex it is handling. Processing the edges instead of the vertices
would rectify this, but would require either atomic operations for adding up all
the forces on a single vertex, or a prefix sum to add up the forces calculated by
different threads, and neither option is very efficient.

The edge-value array is accessed frequently by each thread, and so is placed
in the cached texture memory of the GPU. The edge-index array is accessed
only twice per thread with negligible gain from caching, and so is placed in plain
read-write GPU memory.

5 Results

The algorithm was tested on a single core 2.21 GHz AMD Athlon(tm) 64 Pro-
cessor running Windows XP, with an NVIDIA GeForce 8800 GTX card pro-
grammed via the CUDA (Compute Unified Device Architecture) programming
model, compiled by a C compiler with language extensions [26]. Both CPU and
GPU implementations used single precision floating point.

The algorithm was tested on a variety of graphs extensively used in graph
drawing research to support comparisons [33, 19, 18]. Figure 2 shows selected
layouts and their associated run times. The layouts of all the tested artificial and
real-world graphs resemble those produced by FM3 [18]. Like FM3, our algorithm
is able to display the regularity of six-ary trees, the symmetry of spider and flower
graphs and the global structure of snowflake graphs.

Figure 5 shows for various graphs the speedup our implementation achieves
over FM3 and over the GFDL force directed layout GPU implementation [11].
It shows our implementation to be 1.3×− 4× faster than GFDL and 20×− 60×
faster than CPU implementation of FM3. Figure 5 demonstrates the scalability

4elt: 1.58s,
14,588v, 40,176e

final512: 4.50s,
74,752v,
261,120e

crack: 0.937s,
10,240v, 30,380e

flower B: 0.547s,
9,030v, 131,241e

sierpinski 08:
0.984s, 9,843v,

19,683e

fe pwt: 2.48s,
36,463v,
144,794e

fe ocean: 12.07s,
143,437v,
409,593e

bcsstk31: 1.31s,
35,586v,
572,913e

bcsstk32: 1.99s,
44,609v,
985,046e

bcsstk33: 0.968s,
8,738v, 291,583e

snowflakes C:
1.94s, 97,001v,

97,000e

spider B: 1.49s,
10,000v, 22,000e

tree 06 06: 24.6s,
55,987v, 55,986e

add32: 1.40s,
4,960v, 9,462e

grid rnd 100:
1.72s, 9,497v,

17,849e

Fig. 2. Layouts of various graphs computed with out approach, indicated by name,
running time (in seconds), followed by the numbers of vertices and edges.

of our GPU implementation. Its running time is largely a factor of graph size,
though dependent on the number of iterations needed to resolve vertex place-
ment at each level of the graph hierarchy. Thus the large 6-ary tree required
significantly more iterations (by a factor of five) to reach a planar embedding
than did the others.

We recorded the running time of the major parts of the algorithm for both the
CPU and the GPU implementations. Table 5 shows the result for a few graphs.
The CPU implementation spends on an average nearly 85.5% of CPU cycles
in calculating the forces and this step is clearly the performance bottleneck.
The GPU implementation reduces the time spent in calculating forces by 7-40
times (depending upon the size of the graph). One disadvantage of the GPU
implementation is that lots of cycles are wasted in copying data back and forth
between the GPU and the CPU. GPU implementation spends 18%-25% of the

Fig. 3. Speedup factors over GPU force directed layout (GFDL) and Fast Multilevel
Multipole Method (FMMM). The graphs are in increasing order of graph size.

Fig. 4. Running time vs. graph size for GPU accelerated FM3 layout.

running time in data movement as compared to 2%-3% time spent by the CPU
implementation on the same. Time for constructing the k-d tree is nearly same
in the CPU and GPU implementations, for graphs with less than 50,000 vertices.
For larger graphs, k-d tree construction is more than 30% faster on the GPU.

6 Conclusions and Future Work

The parallel algorithm described in this paper makes graph drawing significantly
faster without compromising layout quality, improving previous fast implemen-
tations that were limited to grid-like graphs. The speedup obtained shows that
it is now possible to draw general graphs with hundreds of thousands of nodes
within a few seconds via the GPU. We also showed that for the purpose of graph

Table 1. Running time (in seconds) comparing total and component run times on
CPU (numerator) v. GPU (denominator).

Graph |V | |E| Total Coarsening Data Trans. Tree Const. Force Calc.

bcsstk33 8,738 291,583 1.63 / 0.968 0.0 / 0.0 0.032 / 0.141 0.095 / 0.096 1.48 / 0.242

4elt 14,588 40,176 7.23 / 1.58 0.0 / 0.0 0.172 / 0.375 0.516 / 0.375 5.92 / 0.672

crack 10,240 30,380 3.51 / 0.937 0.0 / 0.0 0.080 / 0.172 0.456 / 0.203 2.81 / 0.449

final512 74,752 261,120 81.55 / 4.50 0.25 / 0.25 0.260 / 0.828 3.39 / 1.49 73.8 / 1.932

fe ocean 143,437 409,593 90.9 / 12.07 4.1 / 4.1 1.30 / 1.50 5.20 / 3.89 83.0 / 2.48

drawing multipole expansions suffice, and local expansions in FMM should be
best avoided due to their the high constant factor.

The optimized layout of each graph required the hand tuning of a number
of parameters, as automatic inference of these optimal parameters remains an
open research problem. Further algorithm improvements may be possible. In-
creasing CPU-GPU bandwidth may lower the 50,000-node limit where the GPU
outpaced the CPU on median finding, and further load balancing may improve
force calculation.

Acknowledgments.

This work is supported by the NSF under the grant #0534485, and by NVIDIA
Corp.

References

[1] Srinivas Aluru, G. M. Prabhu, and John Gustafson. Truly distribution-
independent algorithms for the n-body problem. In Proc. Supercomputing, pages
420–428, 1994.

[2] Andrew W. Appel. An efficient program for many-body simulation. SIAM J. Sci.
& Stat. Comp., 6(1):85–103, 1985.

[3] Josh Barnes and Piet Hut. A hierarchical o(n log n) force-calculation algorithm.
Nature, 324(6096):446–449, Dec. 1986.

[4] Carlo Batini. Applications of graph drawing to software engineering (abstract).
SIGACT News, 24(1):57, 1993.

[5] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. CACM, 18(9):509–517, 1975.

[6] Nathan A. Carr, Jared Hoberock, Keenan Crane, and John C. Hart. Fast gpu ray
tracing of dynamic meshes using geometry images. In Proc. Graphics Interface,
pages 203–209, 2006.

[7] Ron Davidson and David Harel. Drawing graphs nicely using simulated annealing.
ACM Trans. Graph., 15(4):301–331, 1996.

[8] Marios D. Dikaiakos and Joachim Stadel. A performance study of cosmologi-
cal simulations on message-passing and shared-memory multiprocessors. In Intl.
Conf. on Supercomputing, pages 94–101, 1996.

[9] P. A. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–160,
1984.

[10] Tim Foley and Jeremy Sugerman. Kd-tree acceleration structures for a GPU
raytracer. In Proc. Graphics Hardware, pages 15–22, 2005.

[11] Yaniv Frishman and Member-Ayellet Tal. Multi-level graph layout on the gpu.
IEEE Trans. Vis. Comp. Graph., 13(6):1310–1319, 2007.

[12] Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by force-
directed placement. Software - Practice and Experience, 21(11):1129–1164, 1991.

[13] Pawel Gajer, Michael T. Goodrich, and Stephen G. Kobourov. A multi-
dimensional approach to force-directed layouts of large graphs. Comput. Geom.
Theory Appl., 29(1):3–18, 2004.

[14] Pawel Gajer and Stephen G. Kobourov. Grip: Graph drawing with intelligent
placement. In Proc. Graph Drawing, pages 222–228, 2001.

[15] Ananth Y. Grama, Vipin Kumar, and Ahmed Sameh. Scalable parallel formula-
tions of the Barnes-Hut method for n-body simulations. In Proc. Supercomputing,
pages 439–448, 1994.

[16] Leslie Frederick Greengard. The rapid evaluation of potential fields in particle
systems. PhD thesis, Yale, New Haven, CT, USA, 1987.

[17] Nail A. Gumerov and Ramani Duraiswami. Fast multipole methods on graphics
processors. J. Comp. Physics, 227:8290–8313, 2008.

[18] Stefan Hachul and Michael Jünger. Large-graph layout with the fast multipole
multilevel method. Technical report, Zentrum für Angewandte Informatik Köln,
December 2005.

[19] Stefan Hachul and Michael Junger. An experimental comparison of fast algorithms
for drawing general large graphs. (Proc. Graph Drawing) LNCS, 3843:235–250,
2006.

[20] David Harel and Yehuda Koren. A fast multi-scale method for drawing large
graphs. (Proc. Graph Drawing), LNCS, 1984:183–196, 2000.

[21] David Harel and Yehuda Koren. Graph drawing by high dimensional embedding.
(Proc. Graph Drawing), LNCS, 2528, 2002.

[22] T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs.
Inf. Process. Lett., 31(1):7–15, 1989.

[23] Y. Koren, L. Carmel, and D. Harel. ACE: a fast multiscale eigenvectors compu-
tation for drawing huge graphs, 2001.

[24] Hosam M. Mahmoud. Sorting: A Distribution Theory, chapter High Qulaity Am-
bient Occlusion. Wiley-Interscience, 2000.

[25] NVIDIA. CUDA data parallel primitives library.
[26] NVIDIA. CUDA programming guide, 2007.
[27] Matt Pharr and Randima Fernando. GPU Gems 2: Programming Techniques for

High-Performance Graphics and General-Purpose Computation. Addison-Wesley
Professional, 2005.

[28] Vivek Sarin. Analyzing the error bounds of multipole-based treecodes. Proc.
Supercomputing, page 19, 1998.

[29] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens. Scan
primitives for gpu computing. In Proc. Graphics Hardware, pages 97–106, August
2007.

[30] Mark J. Stock and Adrin Gharakhani. Toward efficient gpu-accelerated n-body
simulations. In 46th AIAA Aerospace Sciences Meeting & Exhibit, 2008.

[31] Jeffrey K. Uhlmann. Enhancing multidimensional tree structures by using a bi-
linear decomposition. Natl. Tech. Info. Svc., ADA229756, 1990.

[32] C. Walshaw. A multilevel algorithm for force-directed graph drawing. (Proc.
Graph Drawing) LNCS, 1984:171–182, 2001.

[33] C. Walshaw. Graph collection at staffweb.cms.gre.ac.uk/∼wc06/partition/, 2007.

