
Surfacing By Numbers
Steve Zelinka∗ Michael Garland†

Department of Computer Science
University of Illinois at Urbana-Champaign

ABSTRACT

We present a novel technique for surface modelling by example
called surfacing by numbers. Our system allows easy detail reuse
from existing 3D models or images. The user selects a source re-
gion and a target region, and the system transfers detail from the
source to the target. The source may be elsewhere on the target sur-
face, on another surface altogether, or even part of an image. As
transfer is formulated as synthesis with a novel surface-based adap-
tation of graph cuts, the source and target regions need not match
in size or shape, and details can be geometric, textural or even user-
defined in nature.

A major contribution of our work is our fast, graph cut-based in-
teractive surface segmentation algorithm. Unlike approaches based
on scissoring, the user loosely strokes within the body of each de-
sired region, and the system computes optimal boundaries between
regions via minimum-cost graph cut. Thus, less precision is re-
quired, the amount of interaction is unrelated to the complexity of
the boundary, and users do not need to search for a view of the
model in which a cut can be made.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Curve, surface, solid, and ob-
ject representations I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction Techniques I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Color, shading, shad-
owing, and texture I.4.6 [Image Processing and Computer Vision]:
Segmentation—Edge and feature detection I.4.7 [Image Processing
and Computer Vision]: Feature Measurement—Size and shape

Keywords: texture synthesis, geometry synthesis, selection

1 INTRODUCTION

Most children have been exposed to the idea of “colouring by num-
bers”. A drawing or cartoon is divided up into numbered regions,
and a table maps numbers to suggested colours. The child colours
each region of the drawing by looking up its number in the table and
filling it in with the corresponding colour. Effectively, the original,
complexly-coloured drawing is segmented such that each segment
becomes easy to colour.

We apply this metaphor to the task of 3D surface modelling. In
particular, we create or edit some signal over a 3D surface, such as
fine-scale geometry, colours, or texture maps. With current tools,
this task can be extremely tedious and repetitive, and reusing de-
tail from existing models is difficult. In surfacing by numbers, the
target surface is segmented into regions, and data-driven synthesis
produces the detail within each region. Thus, the modelling task
reduces to producing an appropriate segmentation, and finding an
example of desired detail in each target region. This division of

∗szelinka@gmail.com
†garland@uiuc.edu

Figure 1: Reusing detail with surfacing by numbers.

work is well-suited to both human and machine capabilities: hu-
mans excel at high-level semantic segmentation, and data-driven
synthesis avoids the tedium tedium of producing the detail.

Our system uses a novel interactive region-centric approach to
surface segmentation. The user identifies small areas which belong
to each desired region with a few mouse strokes, and the system
discovers a good set of boundaries. Region-centric segmentation is
very useful for any interactive part-of-surface selection task. As this
is a fundamental operation within any conventional 3D modelling
system, the approach is widely applicable.

Region-centric segmentation has a number of advantages over
previous interactive segmentation techniques. Most previous work
is based on scissoring, in which the user draws a cut through the
model which is automatically completed or refined. Our approach
requires less precision as users aim for the bodies of regions rather
than their boundaries. The amount of user interaction depends on
the number of regions, rather than the complexity of their bound-
aries, and we also avoid occlusion problems. With scissoring, it
can be difficult to find a view in which a sufficiently close cut can
be drawn due to self-occlusion. Region-centric selection naturally
uses multiple strokes in different views as needed.

We effectively extend data-driven synthesis to sources defined
over manifold domains. Thus, we can flexibly reuse signals from
existing 3D models, such as fine-scale geometric detail. Users can
pull different kinds of detail from a collection of existing 3D models
and novelly combine them to produce new models. As 3D scanning
technology matures, yielding ever more detailed models, the capa-



bility to reuse detail becomes increasingly important. Our region-
centric segmentation algorithm further facilitates such reuse, pro-
viding fast and intuitive selection of complex regions from existing
models.

2 RELATED WORK

Surfacing by numbers complements existing methods for detail
transfer. One class of method is based on common or cross-
parameterization of models [25, 2] which allow easy transfer of
attributes through the parameterization. A significant issue with
these methods is parametric distortion. More recent work directly
parameterizes models over each other [16, 28], and allows for trans-
fer of mesh deformations [33]. These methods can lower the requi-
site distortion, but there is still no guarantee any good common or
cross-parameterization exists.

Cut-and-paste surface editing [4] uses a local parameterization
to transfer geometry among surfaces, avoiding much of the dis-
tortion required in globally consistent parameterization methods.
Sorkine et al. [32] transfer Laplacian coordinates to better adapt
the transferred geometry to the target shape. For large-scale ge-
ometry, surface stitching based on Poisson interpolation [38] yields
excellent results, though good results can also be achieved with rel-
atively unsophisticated blending methods [9]. These methods as-
sume enough desired detail is available for cutting and pasting.

The texture synthesis community has extensively explored tech-
niques for synthesizing detail over surfaces [24, 36, 35, 30, 40].
Our work is inspired by the “texture by numbers” system of Hertz-
mann et al. [12], which operates entirely in the image domain. All
of these methods critically rely on the regular sampling and topol-
ogy of the example data. Surfacing by numbers generalizes graph
cut-based synthesis [18, 37] to allow 3D manifolds to serve as ex-
ample data as well. Other work in the area includes Sharf et al. [29],
who use implicit function matching to complete point-based sur-
faces, and synthesis over volumetric envelopes of a surface [23] or
from volumetric sources [3].

Interactive surface segmentation has not received a great deal
of attention from the computer graphics research community.
Funkhouser et al. [9] and Lee et al. [19] use scissoring-based ap-
proaches, with all the drawbacks highlighted previously. Automatic
segmentation methods have received much more attention [15, 7],
but these methods’ assumptions about a basis for segmentation are
not compatible with our problem. In the image domain, there
have been significant recent advances in segmentation using graph
cuts [26, 20, 1], and our region-centric surface segmentation algo-
rithm, described in detail next, is inspired by these image domain
techniques.

3 INTERACTIVE SURFACE SEGMENTATION

Region-centric surface segmentation augments a user’s ability to se-
lect an arbitrary desired region of a surface. Our approach builds on
the pioneering work of Boykov and Jolly [5] in the image domain.
We generalize this work to 3D surfaces, and develop an efficient
multi-resolution approach for high resolution meshes.

3.1 Background

Boykov and Jolly phrase interactive image segmentation as la-
belling each pixel of an image as either foreground or background.
They transform this problem into a network flow problem, so the
minimum cost cut of the network flow problem yields the segmen-
tation.

The network uses a terminal for each of the two regions of the
segmentation, and one node per pixel. The pixels are connected
to their image neighbours and also to the terminals. The terminal

Figure 2: Interactive surface segmentation of bunny and sculpture
models. Our system excels at scissoring tasks, such as with the
bunny, but can easily handle much more complex selections. The
bunny uses only two strokes, while the figure in the sculpture (shown
front and back) was captured with only about a dozen.

to which a pixel is connected after the cut is computed gives its
segmentation label.

Users interactively stroke pixels as fixed-foreground or fixed-
background. Each fixed pixel’s node gets an unbreakable edge to
the appropriate terminal. Region-wide statistics are collected over
each set of fixed pixels to assign predictive weights to each unfixed
pixel’s links to the terminals. Pixel to pixel edges are weighted by
the perceptual cost of a boundary between the pixels, and are usuall
inversely proportional to the image gradient. The solution can be
updated on each brush stroke, so the approach degrades gracefully
toward manual brushing.

3.2 Surface Segmentation

We follow a similar approach for selecting a region from a 3D sur-
face. We make no assumptions about the input other than that it
is an irregular triangle mesh. Users’ fixed-foreground/background
strokes are projected onto the mesh with a standard object ID buffer.

Our flow network uses two terminal nodes, a node for each ver-
tex, connects neighbouring mesh vertices, and connects all vertices
to each terminal. Fixed-foreground/background nodes are selected
by projecting strokes on the mesh with a standard object buffer. Be-
low, we detail our choices of boundary costs (weights for edges be-
tween mesh vertices) and region-based costs (for edges to terminal
nodes). Note we must weight all costs by the area of the corre-
sponding vertex neighbourhoods to account for irregular sampling.

3.3 Boundary-based Costs

Boundary-based costs guide the placement of the cut, directly pe-
nalizing cuts located in perceptually poor areas. For segmenting
surfaces, a well-known perceptual result is the minima rule [13],
which states that people tend to divide objects into parts at negative
minima of curvature. Thus, the dihedral angle θi j between the faces



Figure 3: Multi-resolution segmentation, coarser to finer, left to right.
Coloured faces are fixed at that resolution, so the graph cut problem
is restricted to the gray areas (fixed coarse level faces correspond to
the user’s brush strokes.)

incident to vertices i and j is a key component. In addition, we gen-
erally prefer a short straight cut through a region to a convoluted
one, so we try to minimize edge length di j. Our boundary-based
cost ei j is:

ei j = η
2π−θi j

2π
+ γ

di j

d
(1)

where η and γ control the relative weight of the length and dihedral
angle terms (we typically set both equal to one), d is the average
edge length, and a dihedral angle π is flat, increasing with concav-
ity.

3.4 Region-based Costs

Region-based costs assume the desired regions are measureably dis-
tinct. A statistical model of each is built using the fixed vertices in
order to predict membership of unfixed vertices. In practice, no ge-
ometric region model is necessary for most selection tasks on sur-
faces. The boundary-based costs alone do a very good job, as shown
in our results. We tested numerous models, such as histograms of
local curvatures, position-based clustering, projections of Laplacian
coordinates [32], and geodesic fans [39]. Only geodesic fans pro-
duce an qualitative improvement, and only when the desired se-
lection is characterized by a particular kind of detail, but are too
computationally expensive for interactive use. If the surface sup-
ports other signals salient for selection, such as colours or textures,
they can be incorporated into a region-based model using k-means
clustering [20, 26].

3.5 Multiresolution Segmentation

Computing the minimum cost graph cut can be expensive. Interac-
tive response time can be maintained for graphs on the order of tens
of thousands of nodes, but we would like to handle denser meshes.

To do so, we first cluster vertices into a static level of detail hi-
erarchy with vertex correspondences, allowing us to map the fixed
vertices at the finest level into the coarsest level. To avoid ambi-
guity, we prevent clusters containing fixed vertices from different
regions. We solve the minimum cost graph cut as before but over
the clusters instead of individual vertices. The segmentation is then
refined to the next finer level of detail, and the process is repeated.
However, the graph in this finer-level cut is limited to only those
clusters near the boundaries of the coarser-level cut. Thus, the time
complexity of the algorithm becomes proportional to the number of

edges in the cut, rather than the number of edges in the entire mesh.
This process is visualized in Figure 3, where only gray areas are
unfixed.

In constructing the level of detail hierarchy, we wish the most
salient details of the mesh to be preserved. We use quadric-based
simplification [10] as it is extremely fast and produces perceptually
reasonable results, especially given that we do not need to simplify
to extreme levels. In practice, we simplify to a coarsest level on
the order of thousands to tens of thousands of vertices, using two
to four levels of detail. Response time is interactive for up to 100k
vertices. On larger models, the solver can be invoked less often or
only when prompted.

4 SURFACING BY NUMBERS

Surfacing by numbers enables easy, flexible reuse of geometric or
textural detail. User interaction amounts to iteratively selecting re-
gions of the target surface and their corresponding source regions,
and these selection tasks are made particularly easy by our fast,
intuitive segmentation algorithm above. The main purpose of the
user-driven segmentation is decompose the user’s desired signal
over the entire target surface into regions where it is relatively ho-
mogenous and suitable for data-driven synthesis. The key remain-
ing question is how detail is transferred.

We assume detail is encapsulated within a signal φ defined over
the source region, φ : MS → Rn. Example signals used in this pa-
per include texture maps, which evaluate to a colour at each point
on the surface, and displacement fields, which evaluate to a local
offset vector (not necessarily in the normal direction). While the
signals we have used are typically piecewise linear, or mapped into
a piecewise linear domain (e.g., a texture), it is not required.

As the user establishes each regional correspondence, the sys-
tem synthesizes detail over the target region resembling the de-
tail present in the source region. The synthesis process iteratively
copies patches of the signal from the source region to the target
region, and is similar to that used in Graphcut Textures [18]. For
each face of the target region, we maintain a source patch ID and
a geometric mapping between the face and corresponding part of
the source region from which its signal is copied. We perform the
following four steps iteratively:

1. Target position selection. A position for a new patch is se-
lected on the target surface.

2. Source patch selection. A position within the source region
is selected that closely matches existing detail around the se-
lected target position.

3. Mutual patch parameterization. The source and target
patches are parameterized in a common domain.

4. Patch trimming. Boundaries are computed between the pro-
posed new patch and existing surface detail.

Finally, once the user is happy with the results, a final extraction
step is performed. In the following sections, we explain each of
these steps in detail. We then highlight some issues involved with
geometry transfer, and finish our algorithm description with a dis-
cussion of some implementation issues.

4.1 Target Position Selection

We wish to find a position within the target region over which a
new patch of source detail should be placed. We grade each face
according to the sum of the cost of all seams (see below) within
a fixed geodesic distance, and select randomly from the highest.
In grading, seams between placed patches and uncovered regions



are given maximal signal difference. This policy encourages the
algorithm to place new patches overlapping with as-yet-uncovered
areas, as well as overtop areas with bad seams. In practice, the exact
location of the target position does not seem critical to good results.

4.2 Source Patch Selection

Once a target position is selected, we wish to find a source patch that
is a good match for the existing detail already transferred near that
position. Facing a similar problem in their image domain synthe-
sis algorithm, Kwatra et al. [18], depending on the characteristics
of the source signal, choose either random patches, or search for
the best matching position within the source image for the context
of the target position. Choosing a random patch remains a viable
option. However, matching patches across surfaces is an extremely
difficult problem due to the irregular sampling of triangle meshes
and inherent parametric distortion.

We solve this problem using matching based on geodesic
fans [39]. Briefly, a geodesic fan is a surface analogue to a pixel
neighbourhood, and is constructed by tracing a fan of geodesics
across the surface, sampling a signal at equally spaced points
along the geodesics. We preprocess the source region, sampling
a geodesic fan at each face and building a search structure for
them for efficient matching. To select a source patch, we sample
a geodesic fan at the selected target position (note this may only
be a partial geodesic fan if the signal doesn’t completely cover the
nearby surface), and find a good match using the search structure.
As geodesic fan matching is orientation independent, the source
signal may be reused in any orientation, which further increases
perceived randomness (of course, the matching may also be triv-
ially constrained to certain orientations, for example by placing a
vector field over the source). The match also provides an orienta-
tion correspondence, so given a direction within the surface at one
point, we know the corresponding direction on the other surface.
This orientation correspondence is used to start the mutual patch
parameterization.

4.3 Mutual Patch Parameterization

In order to copy detail from one surface to another, we must have
a dense correspondence between the surfaces. The previous step
provides one point correspondence between the surfaces, but this is
clearly not sufficient. Given this initial correspondence, we grow
a pair of corresponding parameterized patches across each surface.
The main requirement of these parameterizations is that they must
be low distortion. Indeed, in our case it is better to halt patch growth
entirely than accept highly-distorted triangles, since those triangles
can simply be covered by new patches in later iterations. In addi-
tion, to make sure that there is a valid signal to copy, we must ensure
that the parameterized target patch is entirely contained within the
parameterized source patch.

We adopt an iterative bounded-distortion flattening approach
similar to that of Sorkine et al. [31], and also to similar to Lapped
Textures [24]. The triangles containing the two points of corre-
spondence are rigidly flattened into the plane while respecting the
correspondence’s orientation. The source patch is parameterized
by flattening vertices in order of the amount of texture stretch [27]
induced to their incident triangles, halting when flattened triangles
violate a distortion bound or self-intersect, as in Sorkine et al.. The
parameterization of the target patch is similar, except that when a
vertex is selected to be added to the patch, we must first verify that
each of its incident triangles being added to the patch fall within
the source patch’s parameterization. However, this is easily done
using the same global self intersection test applied during the con-
struction of the source parameterization. An example of the results
achieved is in Figure 4.

Figure 4: Mutual patch parameterization. The top row shows a pa-
rameterized source patch on the Stanford bunny model (left) and a
target patch grown on a second bunny model. The parameterized
patches are shown at right (target patch in blue). The data-driven
synthesis result after a number of iterations is shown below, along
with a visualization of the patches copied.

Once the mutual parameterization is complete, we have for each
parameterized triangle in the target a mapping onto the source sur-
face. Note that this mapping may be fairly complex. Each target
triangle edge has been mapped to a piecewise linear curve on the
source.

4.4 Patch Trimming

At this point, we have a set of faces from the target region, each with
a low-distortion mapping onto a corresponding part of the source
region. Each target face is also either uncovered, or has an existing
mapping within the source region from a previous patch placement.
The final step of our algorithm is to trim the borders of the new
source patch so that they match well with the existing detail already
copied.

We use another graph cut-based optimization procedure to solve
this problem, with each face of the target region corresponding to a
graph node. Again, there are two terminal nodes, an existing node
TE , for the existing patches on the surface, and a proposed node
TP, representing the new patch. Since nodes are faces, the basic
topology of the graph is the dual of the target mesh. The node of any
face not covered by the new patch is given an infinite weight link to
TE , and vice versa. Additionally, the face selected in Step 1 (§4.1)
is given an infinite weight link to TP. Edges connecting face nodes
are weighted by the cost of the seam they would create.

A seam connects two faces with different patch IDs, and has a
cost equal to the integral of the signal difference between the two
patches along the edge connecting the faces. Each patch maps the
connecting edge between the two target faces to a piecewise linear
curve on the source surface. These two seam curves are arclength-
parameterized as parametric distortion may give them different
lengths. For colour or texture signals, we then simply uniformly
sample both curves, and sum the corresponding sample differences
to evaluate the path integral (we discuss its evaluation for displace-



Figure 5: Geometric detail from the armadillo model (Figure 1) is
transferred to the hand model using our graph cut-based data-driven
synthesis algorithm.

ment fields below). Note that area-based weighting is implicit here,
as longer path integrals evaluate to higher differences.

The minimum cut of the resulting graph produces the trimmed
patch. Faces still connected to TE after the cut retain their current
mappings to the source surface, while those connected to TP are
given new mappings from the new source patch. Note that as in
Graphcut Textures, seam nodes must be used to augment the graph
in order to encourage old seams to be replaced or overwritten.

4.5 Results Extraction

Once iteration is complete, a final transformed mesh can be ex-
tracted. Our extraction proceeds triangle by triangle over the tar-
get region. In many cases, especially with textured source data, or
when the target triangles are small in comparison to source trian-
gles, it is sufficient to simply copy texture coordinates or colours at
the corners of each face from their corresponding position on the
source mesh. More generally, we can use the direct mapping of
each target face onto the source surface to straightforwardly pro-
duce a metamesh that is guaranteed to faithfully reproduce all of
the detail from the source. As a metamesh can have an extremely
high complexity, a better solution is to adaptively refine the tar-
get by sampling the difference between the piecewise linear recon-
struction of the signal and the actual values from the corresponding
source (e.g.,, at the center of each edge and center of the face); in
many cases, the piecewise linear reconstruction will suffice (this
approach mimics that used in ADF construction [8]).

4.6 Geometry Transfer

In order to transfer geometric detail from one surface to another,
as demonstrated in Figure 5, we first construct a displacement field
over the source surface by smoothing [11, 32]. We use geodesic
fan-based bilateral smoothing [39], though any reasonable smooth-
ing algorithm may be used. We copy displacement vectors (which
needn’t be in the normal direction) through a pair of corresponding
local frames at the source and target positions, derived using the
mutual parameterization. Also note that path integrals for comput-
ing graph edge weights may be calculated analytically for displace-
ment fields as the integral of the displacement vector difference,
since the field is piecewise linear by construction. In general, the
target surface should be relatively smooth for good results by this
method.

Figure 6: Surfacing by numbers from a single image. The image does
not contain enough data to cover the entire model. With two source
regions in the skin and hair, surfacing by numbers synthesizes detail
over the whole 3D model.

4.7 Discussion

There are a number of potential extensions of our system. One
possibility is to use texton differences [21], rather than straight sig-
nal differences, in the path integral evaluation. This would lead to
a more accurate difference measurement, as textons better capture
local area information, but they also require extra pre-processing.
Similarly, higher quality may be achieved by applying deforma-
tions to a source patch as it is placed on the target, to match exist-
ing features [37]. High quality can also be achieved by computing
a metamesh after each patch placement, since patches can then be
trimmed to source features, but this very quickly explodes the size
of the output. Also, note that our system is independent of the actual
signal being measured or copied. It may thus be extended trivially
to richer surface descriptions such as BTF’s [34] or shell or volume
textures [6, 23]. Another extension would be to support progres-
sive scale variation [40] across the surface. Currently, we simply
assume a global scale has been fixed between the source and target
regions, but there is no reason this scale could not be varied across
the target surface, since all scale-dependent calculations (e.g., flat-
tening a triangle, computing a path integral) are local. Indeed, scale
could even be varied across the source region, to account for signal
distortion already present within it.

In our results, we have applied only simple blending kernels be-
tween patches copied to the target surface, and between the bound-
ary of a target region and the rest of the model. Higher quality could
likely be achieved by applying more sophisticated blending based
on the Poisson equation [38]. In addition, it can be useful to resyn-
thesize the boundary of two target regions if their source regions
share a common boundary.

There is a non-obvious tradeoff between allowable distortion and
the quality of results. As one would expect, larger allowable dis-
tortion in the mutual parameterization produces worse quality re-
sults due to the visible parametric distortion. However, a certain
amount of distortion is required for good results, as lower distortion
bounds lead to less regularly-shaped patches. Without regularly-
shaped patches, it is difficult for data-driven synthesis to capture
lower-frequency components of the source signal. In practice, we
use distortion bounds on the order of 1.5 to 3 (i.e., stretching or
shrinking in any one direction by at most a factor of 3).

5 RESULTS

Our system runs interactively on a standard 1.5 Ghz PC for medium
sized meshes (up to a hundred thousand vertices). Users can select



from meshes in real-time, the segmentation being updated in under
a second. Once correspondences are established between target and
source regions, detail synthesis is performed offline, usually taking
a few minutes. The primary cost of detail synthesis is the mutual
parameterization, followed by patch finding. Processing times per
source mesh may not be trivial, but usually are on the order of min-
utes.

In terms of amount of interaction required, our segmentation al-
gorithm performs comparably to scissoring, generally requiring a
pair of strokes for simple scissoring operations (slicing an extremity
off). However, typically only a handful of strokes is required even
for relatively arbitrary selections, such as the back of the bunny
model (Figure 7). The sculpture selection in Figure 2, made using
only about a dozen strokes, is quite complex and would be difficult
to achieve with scissoring methods, since there is no one view of the
model in which a reasonably accurate cut can be stroked for this se-
lection. Note that we have used segmentation boundaries limited to
a subset of the edge set to simplify the processing for surfacing by
numbers (no partially-covered triangles), but it would be straight-
forward to smooth the cut in a post-process to produce straighter
boundary curves.

Surfacing by numbers is demonstrated using a variety of geo-
metric source signals in Figures 1, 4, and 5. Surfacing by numbers
can easily accomodate image sources as well (Figure 6). Using a
synthesis-based approach in this case can be particularly useful, es-
pecially when the source image does not contain enough detail to
usefully cover the target model (a common occurrence if one only
has a single photograph of a subject). Note, however, that our ap-
proach is not appropriate for transferring specific image features to
a target model, such as eyes or lips, in which small-scale features
of the image must align to features of the geometry. Using our sys-
tem for such tasks can become tedious, and an approach such as
Matchmaker [17] is better. A hybrid system, using synthesis for
textural regions and constrained texture mapping for specific fea-
tures, would likely be very good for this application, as the synthe-
sis process relieves distortion pressure on the constrained texture
mapping.

As demonstrated in Figure 7, our data-driven synthesis algo-
rithm may also be used in geometry completion [29], or as a part
of context-aware hole-filling of scanned data. Given a smooth in-
terpolatory surface over the hole (commonly generated as a “final”
result in recent hole-filling methods [22, 14]), surfacing by numbers
provides a fast and intuitive way to adapt the interpolatory surface
to contain detail similar to that of the mesh.

6 CONCLUSIONS AND FUTURE WORK

It has been well-demonstrated in the data-driven modelling litera-
ture that high-level semantic segmentation is difficult to do auto-
matically, while high-quality low-level signal reproduction is rel-
atively easy. Humans, however, are well-suited to high-level seg-
mentation, but find reproduction tasks tedious and error-prone. Sur-
facing by numbers combines our high-level intuition with data-
driven synthesis to provide a system leveraging the best of human
machine capabilities. This frees the user to focus on the creative
process, selecting elements for designing and detailing surfaces,
rather than the mechanical, often tedious process of detail creation.
Surfacing by numbers is essentially an “eyedropper” tool for sur-
face detail, loading up detail from a source region, and applying it
to a selected target region. The fast, intuitive surface segmentation
algorithm we have presented is not only the basic interaction mech-
anism for our system, but can also improve the user experience for
a vast range of conventional 3D modelling operations.

One drawback of the selection algorithm we have presented is
its reliance on the minima rule. For artificial objects, this is often
not sufficient, as salient features may be bounded by strictly con-

Figure 7: Geometry completion. The back of the bunny, mostly
smooth and lacking detail, is enhanced with detail taken from other
parts of the model.

vex areas, especially with right angles (consider the top of a table).
Producing such selections with our method requires full brushing,
since it always prefers to place a cut through a nearby flatter region
rather than along a convex edge.

We have explicitly avoided making any assumptions about cor-
relations of signals with the geometry of the surface. In prac-
tice, colour detail often correlates with geometric structure (e.g., on
faces). Exploiting these correlations is a fascinating area for future
research. It may be possible to plausibly transfer highly complex
signals that are typically expensive to compute, such as precom-
puted radiance transfer coefficients, dynamic deformation response
modes, or simulation results such as erosion and weathering.

REFERENCES

[1] Aseem Agarwala, Mira Dontcheva, Maneesh Agrawala, Steven
Drucker, Alex Colburn, Brian Curless, David H. Salesin, and
Michael F. Cohen. Interactive digital photomontage. ACM Trans-
actions on Graphics, 23(3):294–302, 2004.

[2] Brett Allen, Brian Curless, and Zoran Popović. The space of human
body shapes. ACM Transactions on Graphics, 22(3):587–594, 2003.

[3] Pravin Bhat, Stephen Ingram, and Greg Turk. Geometric texture syn-
thesis by example. In Proceedings of the Second Eurographics Sym-
posium on Geometry P rocessing, pages 43–46. Eurographics Associ-
ation, July 2004.

[4] Henning Biermann, Ioana Martin, Fausto Bernardini, and Denis Zorin.
Cut-and-paste editing of multiresolution surfaces. ACM Transactions
on Graphics, 21(3):312–321, 2002.

[5] Yuri Boykov and Marie-Pierre Jolly. Interactive graph cuts for optimal
boundary and region segmentation of objects in n-d images. In Pro-
ceedings of the Eighth IEEE International Conference on Computer
Vision, volume 1, pages 105–112. IEEE Computer Society Press,
2001.

[6] Yanyun Chen, Xin Tong, Jiaping Wang, Stephen Lin, Baining Guo,
and Heung-Yeung Shum. Shell texture functions. ACM Transactions
on Graphics, 23(3):343–353, 2004.

[7] David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. Variational
shape approximation. ACM Transactions on Graphics, 23(3):905–
915, 2004.



[8] Sarah F. Frisken, Ronald N. Perry, Alyn P. Rockwood, and Thouis R.
Jones. Adaptively sampled distance fields: A general representation
of shape for computer graphics. In Proceedings of SIGGRAPH 2000,
pages 249–254. ACM SIGGRAPH, July 2000.

[9] Thomas Funkhouser, Michael Kazhdan, Philip Shilane, Patrick Min,
William Kiefer, Ayellet Tal, Szymon Rusinkiewicz, and David
Dobkin. Modeling by example. ACM Transactions on Graphics,
23(3):652–663, 2004.

[10] Michael Garland and Paul S. Heckbert. Surface simplification using
quadric error metrics. In Proceedings of SIGGRAPH 97, pages 209–
216. ACM SIGGRAPH, August 1997.

[11] Igor Guskov, Wim Sweldens, and Peter Schröeder. Multiresolution
signal processing for meshes. In Proceedings of SIGGRAPH 99, pages
325–334, 1999.

[12] Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian Curless, and
David H. Salesin. Image analogies. In Proceedings of SIGGRAPH
2001, pages 327–340, 2001.

[13] D. D. Hoffman and W. A. Richards. Parts of recognition. Cognition,
18(1–3):65–96, 1984.

[14] Tao Ju. Robust repair of polygonal models. ACM Transactions on
Graphics, 23(3):888–895, 2004.

[15] Sagi Katz and Ayellet Tal. Hierarchical mesh decomposition using
fuzzy clustering and cuts. ACM Transactions on Graphics, 22(3):954–
961, 2003.

[16] Vladislav Kraevoy and Alla Sheffer. Cross-parameterization and com-
patible remeshing of 3d models. ACM Transactions on Graphics,
23(3):861–869, 2004.

[17] Vladislav Kraevoy, Alla Sheffer, and Craig Gotsman. Matchmaker:
Constructing constrained texture maps. ACM Transactions on Graph-
ics, 22(3):326–333, 2003.

[18] Vivek Kwatra, Arno Schödl, Irfan Essa, Grek Turk, and Aaron Bobick.
Graphcut textures: Image and video synthesis using graph cuts. ACM
Transactions on Graphics, 22(3):277–286, July 2003.

[19] Yunjin Lee, Seungyong Lee, Ariel Shamir, Daniel Cohen-Or, and
Hans-Peter Seidel. Intelligent mesh scissoring using 3d snakes. In
Proceedings of the 12th Pacific Conference on Computer Graph-
ics and Applications, pages 279–287. IEEE Computer Society Press,
2004.

[20] Yin Li, Jian Sun, Chi-Keung Tang, and Heung-Yeung Shum. Lazy
snapping. ACM Transactions on Graphics, 23(3):303–308, 2004.

[21] Sebastian Magda and David Kriegman. Fast texture synthesis on ar-
bitrary meshes. In Proceedings of the Eurographics Symposium on
Rendering 2003, pages 82–89. Eurographics Association, 2003.

[22] Fakir S. Nooruddin and Greg Turk. Simplification and repair of polyg-
onal models using volumetric techniques. IEEE Transactions on Vi-
sualization and Computer Graphics, 9(2):191–205, 2003.

[23] Jianbo Peng, Daniel Kristjansson, and Denis Zorin. Interactive mod-
eling of topologically complex geometric detail. ACM Transactions
on Graphics, 23(3):635–643, 2004.

[24] Emil Praun, Adam Finkelstein, and Hugues Hoppe. Lapped textures.
In Proceedings of SIGGRAPH 2000, pages 465–470, New Orleans,
LA, July 2000. ACM SIGGRAPH.

[25] Emil Praun, Wim Sweldens, and Peter Schröeder. Consistent mesh
parameterizations. In Proceedings of SIGGRAPH 2001, pages 179–
184. ACM SIGGRAPH, August 2001.

[26] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. “grab-
cut”: interactive foreground extraction using iterated graph cuts. ACM
Transactions on Graphics, 23(3):309–314, 2004.

[27] Pedro V. Sander, John Snyder, Stephen J. Gortler, and Hugues Hoppe.
Texture mapping progressive meshes. In Proceedings of SIGGRAPH
2001, pages 409–416. ACM SIGGRAPH, 2001.

[28] John Schreiner, Arul Asirvatham, Emil Praun, and Hugues Hoppe.
Inter-surface mapping. ACM Transactions on Graphics, 23(3):870–
877, 2004.

[29] Andrei Sharf, Marc Alexa, and Daniel Cohen-Or. Context-based sur-
face completion. ACM Transactions on Graphics, 23(3):878–877,
2004.

[30] Cyril Soler, Marie-Paule Cani, and Alexis Angelidis. Hierarchical pat-
tern mapping. ACM Transactions on Graphics, 21(3):673–680, 2002.

[31] Olga Sorkine, Daniel Cohen-Or, Rony Goldenthal, and Dani Lischin-

ski. Bounded-distortion piecewise mesh parameterization. In Pro-
ceedings of IEEE Visualization ’02, pages 355–362. IEEE Computer
Society Press, 2002.

[32] Olga Sorkine, Daniel Cohen-Or, Yaron Lipman, Marc Alexa, Chris-
tian Rössl, and Hans-Peter Seidel. Laplacian surface editing. In Pro-
ceedings of the Second Eurographics Symposium on Geometry P ro-
cessing, pages 179–188. Eurographics Association, July 2004.

[33] Robert W. Sumner and Jovan Popović. Deformation transfer for trian-
gle meshes. ACM Transactions on Graphics, 23(3):399–405, 2004.

[34] Xin Tong, Jingdan Zhang, Ligang Liu, Xi Wang, Baining Guo, and
Heung-Yeung Shum. Synthesis of bidirectional texture functions on
arbitrary surfaces. ACM Transactions on Graphics, 21(3):665–672,
2002.

[35] Greg Turk. Texture synthesis on surfaces. In Proceedings of SIG-
GRAPH 2001, pages 347–354. ACM SIGGRAPH, 2001.

[36] Li-Yi Wei and Mark Levoy. Texture synthesis over arbitrary manifold
surfaces. In Proceedings of SIGGRAPH 2001, pages 355–360. ACM
SIGGRAPH, 2001.

[37] Qing Wu and Yizhou Yu. Feature matching and deformation for tex-
ture synthesis. ACM Transactions on Graphics, 23(3):364–367, 2004.

[38] Yizhou Yu, Kun Zhou, Dong Xu, Xiaohan Shi, Hujun Bao, Baining
Guo, and Heung-Yeung Shum. Mesh editing with poisson-based gra-
dient field manipulation. ACM Transactions on Graphics, 23(3):644–
651, 2004.

[39] Steve Zelinka and Michael Garland. Similarity-based surface mod-
elling using geodesic fans. In Proceedings of the Second Eurographics
Symposium on Geometry P rocessing, pages 209–218. Eurographics
Association, July 2004.

[40] Jingdan Zhang, Kun Zhou, Luiz Velho, Baining Guo, and Heung-
Yeung Shum. Synthesis of progressively variant texture on arbitrary
surfaces. ACM Transactions on Graphics, 22(3):295–302, July 2003.


	Introduction
	Related Work
	Interactive Surface Segmentation
	Background
	Surface Segmentation
	Boundary-based Costs
	Region-based Costs
	Multiresolution Segmentation

	Surfacing By Numbers
	Target Position Selection
	Source Patch Selection
	Mutual Patch Parameterization
	Patch Trimming
	Results Extraction
	Geometry Transfer
	Discussion

	Results
	Conclusions and Future Work

