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Abstract

Time-varying surfaces are ubiquitous in movies, games, and scientific applications. For reasons of efficiency and
simplicity of formulation, these surfaces are often generated and represented as dense polygonal meshes with
static connectivity. As a result, such deforming meshes often have a tremendous surplus of detail, with many more
vertices and polygons than necessary for any given frame. An extensive amount of work has addressed the issue of
simplifying a static mesh; however, these methods are inadequate for time-varying surfaces when there is a high
degree of non-rigid deformation. We thus propose a new multiresolution representation for deforming surfaces
that, together with our dynamic improvement scheme, provides high quality surface approximations at any level-
of-detail, for all frames of an animation. Our algorithm also gives rise to a new progressive representation for
time-varying multiresolution hierarchies, consisting of a base hierarchy for the initial frame and a sequence of
update operations for subsequent frames. We demonstrate that this provides a very effective means of extracting
static or view-dependent approximations for a deforming mesh over all frames of an animation.

1. Introduction

Complex time-varying surfaces arise in countless applica-
tions. By their very nature, the center of attention in any
movie or game is invariably in motion. Isosurface anima-
tion is a core method for visualizing dynamic scientific sim-
ulations. Whether produced by hand, as in key-framing, via
simulation of physical processes, as with cloth and skin, or
acquired via motion capture, time-varying surfaces are very
often represented by polygon meshes.

In many cases, it is advantageous to use a single static mesh
connectivity when modeling surface deformations rather
than using a separate mesh for each time step. It requires sig-
nificantly less storage space and generally makes processing
the time sequence much more tractable. Many time-stepping
finite element simulations also have a strong preference for
maintaining a fixed mesh connectivity, as altering the con-
nectivity can involve an expensive reprojection of the solu-
tion to the new mesh. Yet using a fixed connectivity also has
an obvious drawback: it can require far more polygons than
would be necessary in any given frame. This is particularly
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true for surfaces that undergo extremely non-rigid deforma-
tions, such as might occur in cloth simulations, morphing,
and other non-skelatal forms of animation. Such deforma-
tions require extremely dense meshes, as the static connec-
tivity must be able to accurately represent all possible defor-
mations of the surface.

It is thus very common that meshes used in generating these
deformations have entirely too many triangles in any par-
ticular frame. For static surfaces, there is a wide selection
of simplification methods that can be used to remove un-
necessary mesh detail. This is emphatically not the case for
time-varying surfaces. Very little work has addressed how
to maintain accurate approximations of a time-varying sur-
face, let alone a multiresolution hierarchy that can be used
for efficient adaptive refinement.

Producing a single coarse connectivity can lead to arbitrar-
ily bad approximations in certain frames when the surface
deformation is highly non-rigid (see Figure 1). A single
multiresolution hierarchy yields similarly bad results—very
deep traversals to meet a given error tolerance or very bad
approximations for a given triangle budget. On the other
hand, producing an entirely new approximation for each
frame wastes a great deal of space and, having no tempo-
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Figure 1: Approximating a horse-to-man animation. A single approximation is not suitable for all frames of this highly non-
rigid deformation. Our method dynamically adjusts an entire multiresolution representation over time, producing high quality
approximations at any level-of-detail, on every frame.

ral coherence, can cause the surface to twitch and vibrate in
a most unpleasant manner.

We therefore propose a new multiresolution representation
for deforming surfaces that can provide high quality surface
approximations at all frames of an animation. We define a
new mesh structure—the multilevel mesh—that represents
the input surface at multiple levels of detail. We have de-
veloped a dynamic reclustering scheme that can incremen-
tally update this hierarchy in response to the geometric de-
formation of the underlying surface. By recording a base hi-
erarchy for the initial frame, and a sequence of incremen-
tal update operations, we arrive at a new progressive rep-
resentation for time-varying multiresolution hierarchies. We
demonstrate that this provides an efficient means of extract-
ing high quality static or view-dependent approximations for
a deforming mesh over all frames of an animation.

2. Related Work

Simplification and LOD. There is now extensive literature
on the approximation of dense polygonal meshes by coarser
meshes that preserve surface detail [Gar99, LRC∗02]. These
methods may be used in rigid motion animations. However,
as they coarsen a mesh based on a specific fixed shape, the
meshes they produce can yield very poor approximations if
the surface deforms non-rigidly.

The simplification methods in widespread use are predomi-
nantly iterative edge contraction methods; representative al-
gorithms include those due to Hoppe [Hop96] and Garland
& Heckbert [GH97]. Such methods induce a simple mul-
tiresolution structure on the surface that can be used for
adaptive refinement of the mesh [XV96,Hop97,LE97]. With
a single hierarchichal structure, an application can extract
many possible approximations of the input surface. This has
been used most frequently for performing view-dependent
refinement for real-time display. But as with the simplifica-
tion methods upon which they are based, this approach uses

a single static hierarchy whose suitability degrades quickly
if the surface deforms.

Time-Varying Approximation. Compared to the simplifi-
cation of static meshes, the problem of producing good ap-
proximations for time-varying meshes has gone largely un-
addressed. One natural approach is to augment standard sim-
plification algorithms to consider all frames of an animation
when choosing an edge to contract. This is the approach
taken by Mohr and Gleicher [MG03], who adapt the QS-
lim algorithm [GH97] by summing quadrics over each frame
of the animation. The result is a single mesh that attempts
to provide a good “average” approximation over all frames.
This approach can produce acceptable results, provided that
the surface does not deform too much, in which case the “av-
erage” best fit mesh tends to be uniformly poor in all frames.
DeCoro and Rusinkiewicz [DR05] put forth a related method
specific to linear-blend skinned models. This method works
quite well, but is limited to a very specific class of deforma-
tions.

The only scheme that we are aware of that provides a
multiresolution format for deforming surfaces is the Time-
dependent Directed Acyclic Graph, or T-DAG, construction
introduced by Shamir et al. [SPB00, SP01]. The T-DAG is
built by merging the individual multiresolution hierarchies
for each frame of a mesh sequence together into a unified
graph. Tags are assigned to each node specifying the time
interval over which the node should be alive. The T-DAG
has the advantage of being able to handle arbitrary topol-
ogy changes as well as geometric deformations. The pri-
mary drawback of this approach is that it is inherently non-
incremental and potentially space-inefficient. Although the
T-DAG can be constructed incrementally by taking history
into account when performing the mesh decimation for the
next frame, this can worsen the subsequent approximations.
Another drawback is that it appears to be difficult to maintain
an arbitrary cut through the alive portion of the T-DAG as the
animation proceeds, necessitating an inefficient re-traversal
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from the roots [SPB00] or the use of the same vertex hierar-
chy for all time-steps [SP01].

A problem related to approximating deforming meshes
arises in mesh morphing. If the source and target meshes do
not have identical connectivity, the source cannot be trans-
formed into the target simply by interpolating vertex posi-
tions. One standard solution to this problem is to compute
a single static metamesh [LDSS99] representing the union
of both meshes. This typically produces a mesh of much
higher complexity than the inputs. A more economical solu-
tion is to compute a sequence of vertex additions, vertex re-
movals, and edge flips that will transform the source into the
target [LL05, AL02, ALS04]. This incremental updating of
the mesh connectivity parallels our own work. But whereas
these morphing methods attempt to derive a good sequence
of operations to achieve a specified connectivity, our goal is
to adapt the connectivity to produce a good surface approxi-
mation.

Clustering. Clustering is an attractive algorithmic paradigm
that is widely used in countless computational disciplines.
Of particular interest to us here is that iterative edge contrac-
tion and their resulting hierarchies can be viewed as clus-
tering operations [Gar99]. Individual contraction operations
merge vertex clusters into larger clusters. The well-known
vertex hierarchies used for view-dependent refinement sim-
ply encode the hierarchical nesting of these clusters.

The key to our work is that we view the problem of maintain-
ing a good multiresolution hierarchy as the surface deforms
as one of reclustering. A hierarchy built for the first frame
represents a hierarchical clustering of the initial mesh. As
the surface deforms, we will seek to incrementally improve
this clustering. Our approach to multilevel reclustering is
inspired by the well-known Kernighan-Lin partition refine-
ment algorithm [KL70]. In particular, we draw on the hi-
erarchical variants of the Kernighan-Lin algorithm that have
been developed for rapid graph partitioning in the distributed
computing field [KK98a, KK98b].

Carr and Hart [CH04] introduced a method of re-clustering
a vertex hierarchy utilizing tree rotations and grandchild
swapping. However, to be valid, the clusters must remain
connected. This property can be violated by the tree update
operations. Carr and Hart reduce the probability of invalid
tree updates with the use of Bloom filters. However, their
probabilistic method—which they developed for texture at-
las rebalancing—is not suitable for mesh approximation, as
it cannot guarantee correctness. Indeed, by defining a rather
different framework for representing and updating the hier-
archy, we are able to guarantee that only valid updates are
performed.

3. The Multilevel Mesh

Our multilevel mesh is constructed by iterative edge-
contraction on an initial mesh M0. If M1 is the simplified

Figure 2: The multilevel mesh hierarchy. Mesh edges en-
code intralevel connectivity, while contraction edges (thick
arcs between meshes) record dependencies between levels.
Groups of vertices that all have the same parent form a con-
traction cluster (depicted by their boundaries).

output, we define a set of contraction edges connecting each
vertex a in M1 to all the vertices in M0 that were contracted
together to form a. By repeating this process we can con-
struct additional levels, M2, M3, ..., Mn, and the contraction
edges connecting each level to the one above it. In particu-
lar, we use the QSlim algorithm for this process [GH97]; and
we choose the vertex count of each successive level so as to
have a constant complexity reduction factor at each level.
Note that this factor, the branching factor, need not be equal
to two.

The multilevel mesh structure consists of a number of levels,
connected by contraction edges. Each level is, itself, a mesh,
complete with vertices and mesh edges. Thus, there are two
distinct kinds of edges in the multilevel mesh. The contrac-
tion edges indicate which finer vertices were contracted to-
gether to form each coarser vertex, whereas the mesh edges
indicate the vertex connectivity within a single level (See
Figure 2). We do not require any level (including the origi-
nal input) to be manifold. Levels are numbered in increasing
order from fine to coarse, starting with M0.

If there is a contraction edge connecting vertex v in level Mk
to a vertex a in Mk+1, then a is called the parent of v. Like-
wise, v is a child of a. The set of all children of a particular
vertex, a, is a contraction cluster, denoted by Ca. Note that
a corresponds to a connected patch (namely Ca) on Mk, and
also on all lower levels.

Given only the finest level mesh M0, and the contraction
clusters at each level, we can reconstruct the vertex posi-
tions and connectivity of each higher level (this will be-
come important when dynamically modifying the hierar-
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chy). In particular, since we are using the Quadric Error Met-
ric (QEM) [GH97], each vertex, v, in M0 will have an asso-
ciated quadric, Qv, computed directly from the input mesh.
Each vertex, a, in level Mk for k > 0 will have an associated
quadric Qa computed by Qa = ∑u∈Ca

Qu. The optimal posi-
tion of vertex a, is then obtained by minimizing Qa(a). The
error of vertex a is denoted Ea = Qa(a).

The connectivity of Mk is formed directly from the connec-
tivity of Mk−1 and the contraction edges connecting the two
levels. Given a polygon p in Mk−1, we map each of its ver-
tices to its parent in Mk. If p does not degenerate through this
mapping (i.e. it still has three or more distinct edges), then it
exists in Mk.

The basic structure of our hierarchy is similar to that of ver-
tex hierarchies [XV96, Hop97, LE97], in that it has nodes
that represent some kind of contraction operation, with arcs
that represent the dependencies between operations. How-
ever, our multilevel mesh additionally has mesh connectivity
at each level of the hierarchy, and we view the nodes as ver-
tices at a particular resolution, rather than simply contrac-
tion operations. If the mesh edges are discarded, the struc-
ture is completely compatible with existing view-dependent-
refinement methods. However, this mesh connectivity is vi-
tal in our reclustering algorithm, as it provides the means to
determine the validity of an update (§4.2).

4. Reclustering

A multilevel mesh is constructed from a specific input mesh.
However, for a deforming surface this is inadequate, as dis-
cussed in §1. In particular, since the coarser vertex positions
are based on the quadrics of their children, these positions
can become arbitrarily bad as the children move. In addi-
tion, the simplified connectivity may become ill-suited for
the new shape. Thus, as the underlying surface deforms, we
seek to improve the hierarchy to better represent it. We do
so by modifying the contraction clusters to minimize the
total error of the hierachy. To simplify the discussion, we
will first describe this improvement process from the stand-
point of a two-level multilevel mesh {M0,M1} representing
a static object. Although the “metric” referred to in subse-
quent sections can be fairly arbitrary, in practice we use the
QEM [GH97] (and a hierarchical version of it, to be intro-
duced in §4.3), because it provides a good trade-off between
speed and accuracy, and has a nice additive property that
makes updating easier.

4.1. The Swap Operation

The fundamental reclustering operation we have chosen is
the swap operation, defined as follows. Consider a vertex,
v ∈ M0, in some contraction cluster Ca, which has a neigh-
bor (defined by a mesh edge) in contraction cluster Cb. Ex-
cept in certain situations (§4.2), v can be moved to cluster Cb
(Figure 3). This operation is a swap, identified by the triplet

v

ab

Figure 3: Swap
(v,a,b) changes
v’s parent from a
to b.

Figure 4: A swap can cause an edge
flip in the approximation. The adja-
cency of clusters at level k governs the
mesh connectivity of level k +1.

(v,a,b). When a vertex moves from one cluster to another,
this is nothing more than changing its parent. This change,
however, will affect the value of the error metric (and there-
fore the optimal vertex positions). It may also affect the con-
nectivity of M1 (Figure 4). In particular, note that the swap
can produce an edge flip in the approximation (something
not possible in solely adaptive refinement of a static hierar-
chy).

There are a number of ways that clusters could be improved;
however, we have chosen the swap operation because it
is the fundamental partition refinement operation used in
Kernighan-Lin based algorithms, which have been very suc-
cessful in other domains. The swap operation is suitable as
a fundamental reclustering operation for many of the same
reasons that edge-collapse is suitable as a fundamental sim-
plification operation. A swap is a very fine-grained operation
with a well-defined effect on the clustering (and hence the
hierarchy that we are improving). In addition, other kinds of
operations, like moving whole groups of vertices or merg-
ing and splitting clusters, can be performed as a sequence of
swaps. More free-form approaches, like Lloyd-style relax-
ation [SWG∗03, CH04], would be difficult to do efficiently
in a hierarchical setting.

4.2. Swap Priority and Validity

Only certain swaps are both valid and beneficial. Our reclus-
tering algorithm processes only valid swaps in the order of
greatest to least benefit.

We consider a swap to be invalid if it would cause any cluster
to become disconnected. By disallowing invalid swaps, we
guarantee that every cluster is a connected set of vertices,
thus ensuring that the induced approximation could have
been arrived at by a sequence of edge contractions on the
original mesh. This validity rule holds regardless of whether
the surface is manifold.

A potential swap (v,a,b) is valid if v is not the only child of a
and it is not a pinch vertex. A vertex v is a pinch vertex if the
vertices that share a face with v and are in the same cluster
cannot be formed into a single chain (or tree, if the region is
non-manifold) of edges, without passing through v. If v is a
pinch vertex, swapping it from Ca to Cb will disconnect the
cluster Ca; Figure 5 illustrates this case.
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Figure 5: Pinch (left) and non-pinch (right) vertices. Dot-
ted red lines indicate boundary of cluster Ca after swap
(v,a,b). In the pinch vertex case, the boundary becomes dis-
connected.
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Figure 6: Topology preservation. Performing swap (v,a,b)
connects Cb and Cc, but since they are already adjacent, the
approximation becomes nonmanifold.

The validity rule just described guarantees that all clusters
remain connected, regardless of surface topology. However,
it does not guarantee that approximations before and after
swapping are homeomorphic (e.g., initially manifold regions
may become non-manifold). For some applications, notably
texture mapping, maintaining a homeomorphic correspon-
dence between manifold approximations is crucial. Thus, we
provide a second optional validity rule that can be applied if
the user requires topological preservation.

We assume that M0 is manifold and that a homeomor-
phism from M0 to M1 exists. This must be enforced dur-
ing initial simplification using, for example, the link con-
dition [DEGN98]. Again, we consider a potential swap
(v,a,b). There is a homeomorphism between M1 and the ap-
proximation after the swap if the shared boundary between
the resulting cluster Cb and each of its neighbors is a sin-
gle connected chain. Thus, if a swap (v,a,b) creates a new
boundary between Cb and any cluster Cc to which it was
already adjacent, then the swap does not preserve the home-
omorphism and should not be performed.

To see that this is sufficient, consider the effect of swaps on
the mesh edges of M1. Each swap corresponds to zero or
more edge-flips in M1. When two clusters are adjacent on
M0, there is an edge between them in M1. A swap (v,a,b)
may cause, for example, an edge (a,d) to flip to (b,c). Such
edge-flipping can never alter the topology of the surface un-
less the edge (b,c) already exists in M1, in which case the
situation is degenerate (see Figure 6). This is exactly the sit-
uation that our homeomorphism preserving rule prevents.

The benefit of a swap is how much the error decreases when
the swap is performed. For the QEM, we can more efficiently

estimate the benefit without actually performing the swap.
By assuming fixed vertex positions, the difference between
the error before (E) and after (E ′) moving vertex v from clus-
ter Ca to cluster Cb would simply be

E ′−E = Qv(b)−Qv(a). (1)

Note that this is only an estimate, because the vertex posi-
tions are not fixed. It is, however, a conservative estimate, as
the error can only decrease when computing the new optimal
vertex positions from the updated quadrics.

When simplifying texture mapped surfaces, we also add in
a second error term that penalizes triangle fold-over by ana-
lyzing face normal variance around each vertex. We compute
texture coordinates using attribute quadrics [Hop99].

After performing a swap (v,a,b) the new quadrics of a and b
are given by Q′

a = Qa−Qv, Q′
b = Qb +Qv. We then compute

the new optimal vertex positions as before. The connectivity
of M1 may also change, and can be determined as in the
initial construction (§3).

The simplest swapping algorithm would pick the highest
benefit valid potential swap, perform the swap, and repeat.
When no beneficial, valid swaps remain, the algorithm stops.
To increase efficiency, we perform an entire independent set
of swaps on each pass.

4.3. Coarse-to-Fine Hierarchical Improvement

Our method can improve an entire hierarchy, not just a sin-
gle approximation. We perform hierarchichal improvement
in a coarse-to-fine fashion. Note that when doing hierarchi-
cal improvement, the validity rules must be applied with re-
spect to the clustering at the current level and all coarser
levels (it is possible for a swap to be valid with respect to
one clustering, but not a coarser clustering).

Since we are interested in the quality of the approximation
at every level, the single-level QEM is insufficient. When
reclustering deep in the hierarchy, we do not want to destroy
improvements already made at coarser levels. Thus, we use
a hierarchical version of the QEM that is a weighted sum
of the quadric errors at each coarser level. When recluster-
ing level k, the aggregate error of level k and all coarser
levels is given by E = ∑

n
i=k+1(wi ∑u∈Mi

Eu). The weights,
wi, are chosen to make the contributions of each level uni-
form (i.e. to counteract the natural exponential growth of the
quadric metric as the number of vertices decreases). This can
be achieved by setting

wk = 1

wi+1 = wi

(
|Mi+1|
|Mi|

)β

, (2)

where |Mi| denotes the vertex count of level i, and β is
a constant corresponding to the growth factor of the error
metric. We have found that β ≈ 1.9 for the QEM on many
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Figure 7: Improving a static approximation. Warmer colors
indicate higher quadric error. As seen in the histogram, our
result has more vertices with low error, and fewer with high
error.

meshes. All of the examples in this paper were generated
using β = 1.9127, found by regression fitting.

The benefit of a swap (v,a,b) at level k can be computed by
applying equation 1 at each coarser level above k (first to a
and b, then their parents, grandparents, etc...). Each of these
contributions would also be weighted by wi.

To demonstrate that the improvement process lowers ap-
proximation error, an example of improving a two-level hi-
erarchy is shown in Figure 7 where a 23,984 vertex model
is approximated by 1,600 vertices. Note that our result has
generally lower, and more uniform, error than the original
QSlim output. The metric used for the improvement process
was the uniform Quadric Error Metric, which was reduced
by 26%. The symmetric RMS error was reduced by 5.9% (as
measured by MESH [ASCE02]). This discrepency is due to
the fact that the QEM error is not completely correlated with
RMS error. Although the improvement in this static case is
arguably quite modest, the real aim of our method is to han-
dle multiresolution deforming surfaces, as described next.

5. Deforming Meshes

Given a sequence S = {S0,S1,S2, ...} of finest-level meshes,
all with the same connectivity, we seek to generate a corre-
sponding sequence of hierarchies H = {H0,H1,H2, ...} that
well represent their respective surfaces. First, we construct
H0 from S0. This hierarchy can be applied to S1 as well
(i.e. using the same contraction clusters). However, since
the vertex positions of the finest level mesh have changed,
the quadrics will change, and hence the error also changes
(generally, it will increase). By running our reclustering al-
gorithm, we adapt the initial hierarchy to reduce the error
and better approximate S1, producing H1. Continuing in this
fashion, Hi+1 is generated from Hi by improving its error

Figure 8: Starting from an initial hierarchy, we obtain im-
proved hierachies for each subsequent frame, via our reclus-
tering algorithm.

with respect to Si+1. This process is illustrated schematically
in Figure 8.

Not only does this process produce a better hierachy for
each frame, it also gives us an explicit transformation from
Hi to Hi+1; namely, the sequence of swaps used to trans-
form one hierarchy into the other. H0, the vertex positions
for each frame, and the sequence of swaps for each frame
is all that is needed to encode an entire dynamic multires-
olution representation of the deformation. This is our pro-
gressive representation, which, even without compression,
uses significantly less space than storing full hierarchies for
each frame (allowing, for example, low bitrate progressive
transmission). Note also that once the swaps have been pre-
computed in this fashion, the intralevel connectivity of the
multilevel mesh can be discarded, leaving what is essentially
a vertex hierarchy (which can hence be immediately used in
view-dependent refinement and other vertex hierarchy appli-
cations).

5.1. Fast Updating

Performing all the swaps to proceed from one frame to the
next is somewhat inefficient, mainly because of the need
to update the connectivity of the approximation (which can
be any arbitrary view-dependent or view-independent cut).
However, the effect of a sequence of swaps on the connec-
tivity can also be precomputed.

In the usual binary vertex hierarchies [Hop97], each node
has associated with it the faces that will be destroyed or cre-
ated when the corresponding edge collapse or vertex split oc-
curs. Similarly, viewing the vertices of the multilevel mesh
as contraction operation nodes, we associate a degenerate
set with each node, identifying the finest-mesh triangles that
degenerate when the node’s children are contracted together.

Given Hi and Hi+1, we compute the degenerate sets of each
node in Hi+1, and store the difference from the correspond-
ing set of Hi. This difference information (plus the sequence
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(a) Sequence (b) Static approx.

(c) Static hierarchy (d) Our method

Figure 9: A horse collapsing like a rubber sheet (original:
8,431v; approximations: 1,600v). The first frame approxima-
tion (b) cannot represent later frames well. A “best-cut” ap-
proximation from a static hierarchy (c) still suffers from se-
rious artifacts. Our adaptively improved hierarchy (d) yeilds
a much nicer approximation.

of swaps transforming Hi into Hi+1) is all the information
needed to efficiently replicate the update later.

At playback time, the swaps and degenerate set updates will
be performed. Then, assuming there is some arbitrary cut
through the tree that should be maintained, the currently ac-
tive set of triangles will need to be updated. Each triangle
that was removed from the degenerate set of a currently con-
tracted node, and not added back into the degenerate set of
some other contracted node, must be added to the active set.
Likewise, any triangle that was added to the degenerate set
of a contracted node, and not originally removed from some
other contracted node, must be removed from the active set.

6. Results

We will now present several results from our system. We be-
gin with an extreme deformation example (Figure 9). In this
sequence, a horse model collapses as if it were constructed
of a thin rubber sheet. Clearly, any single coarse approxi-
mation of this model is likely to be extremely bad for some
frame (see Figure 9(b)), thus necessitating a dynamic rep-
resentation. One possible approach to providing such a dy-
namic mesh is to still use a static simplification hierarchy,
but extract from it a different cut for each frame (based on
the quadric error, for example). However, even this yields

unpleasent artifacts, as can be seen especially in the tail of
the horse. Our method, which quickly provides an adapted
hierarchy for each frame, produces a far superior approxi-
mation. The three approximations shown in this figure all
have 1,600 vertices.

The horse to man morphing sequence (Figures 1 & 14) illus-
trates the connectivity changes that occur to better suit the
hierarchy to the deforming surface. Figure 14 shows several
levels detail from the hierarchy. Notice the mesh changes
taking place (especially in the chest and shoulder area). Fig-
ure 1 shows a closeup of the face in the last frame and a
comparison with the first-frame static approximation result.
Notice that in the static result the eyes are essentially gone,
the mesh itself is extremely ugly, and there are obvious sur-
face inversions (the black triangles). All of these artifacts are
not present in our result, which additionally has a 34% lower
RMS error and an 84% lower QEM error.

An elephant to horse morphing sequence is shown in Figure
10. The original mesh has 42,900 vertices, the approxima-
tions shown each have 800 vertices. Notice that the nose of
the horse is terribly malformed in the static hierarchy case.
Our dynamic hierarchy does a significantly better job on the
nose and eyes. For comparison, we show also the result of
applying QSlim directly to the last frame of the sequence.

Figure 11 shows an RMS error (as measured by Metro
[CRS98]) comparison of our method with several alterna-
tives. This graph was generated for an 800 vertex approxi-
mation of a galloping horse animation (Figure 8). The First-
frame Static method is using the approximation from the
first frame for all subsequent frames (only its vertex posi-
tions change). The Direct QSlim method is generating an
entirely new approximation each frame, without regard to
history. The “Average” Mesh method modifies the QSlim
algorithm to produce a single (static connectivity) approx-
imation based on all frames. This is done by collecting the
edge-collapse of least cost from each frame, and selecting
among these the edge-collapse whose maximum cost over
all frames is smallest. This edge-collapse is then performed
for every frame, and the process repeats. From the graph, it
is clear that our method generally results in smaller RMS er-
rors than the two static connectivity methods. We can also
see that there is no appreciable accumulation of error. Other
experiments on longer and more extreme deformation cases
also showed no noticable error accumulation. Finally, even
though our error is higher than that of an entirely new ap-
proximation per frame, the lack of temporal coherence in
such a method introduces such obvious, terrible flickering
that it is rendered useless (see the accompanying video).

Since our multilevel mesh is, in some sense, an extension
of vertex hierarchies, it can be easily used in existing adap-
tive refinement schemes. Figure 12 demonstrates this with a
galloping elephant, refined adaptively along one of its axes.
Once a sequence of swaps has been precomputed for the ani-
mation, it can be progressively played back as the animation
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(a) Sequence (b) Static hierarchy

(c) Direct QSlim (d) Our method

Figure 10: Elephant to horse morph (original: 42,900v; ap-
proximations: 800v). (b) “Best-cut” from a static hierarchy.
(d) Our dynamic hierarchy better approximates highly de-
formed states. (c) The direct QSlim approximation, for com-
parison.
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Figure 11: Various methods’ RMS error per frame for an
800 vertex approximation of a galloping horse.

Figure 12: The multilevel mesh structure can easily be used
with adaptive refinement schemes. Here, refinement is based
on position along the x axis.

proceeds. Our progressive representation uses significantly
less space than storing an entire hierarchy on each frame,
and provides a format suitable for streaming animation ap-
plications. An adaptive cut, such as the one shown in the
figure, can be efficiently maintained even as the hierarchy
changes.

Our method is efficient in terms of both time and space. All
times reported here were measured on a 1.7Ghz Pentium IV
with 512MB RAM. The pre-processing (reclustering) stage
takes an average of 4.3 seconds per frame to generate the
swap sequence for a hierarchy of the collapsing horse with a
branching factor of eight. This is comparable to the cost of
rebuilding the hierarchy with the QSlim algorithm, approx-
imately 6.9 seconds per frame. The pre-processing time is,
however, highly dependent on the branching factor (smaller
branching factors produce more levels, and each additional
level incurs measurable overhead). Storing the swaps (with-
out any additional compression) for the collapsing horse se-
quence requires about 2.2KB per frame (using two 32-bit
integers to identify each swap). Storing full degenerate set
update information, plus swaps, requires about 18.5KB per
frame. By comparison, storing the full hierarchy (a single
integer for each node indicating who its parent is, plus the
degenerate sets for each node) would require 103.4KB per
frame. These numbers do not include the cost of storing
the vertex positions (which is substantial, but could be com-
pressed using existing methods [AM00]).

The run-time costs depend, of course, on the degree of de-
formation per frame, and the size of the input mesh, but per-
frame time to update the hierarchy is typically in the 2ms to
12ms range for moderate size input meshes (around 10,000
vertices). Figure 13 shows hierarchy update times for each
frame of the collapsing horse and galloping horse. Note that
the collapsing horse (which has several frames of relatively
high cost) represents essentially a “worst case” scenario,
since it contains drastic deformation over a very short time
period. For increased run-time performance, less important
swaps (i.e. ones that do not improve the metric appreciably)
could be discarded during pre-computation.
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Figure 14: Levels of detail (original, 3200v, 800v) from the horse-to-man multilevel mesh sequence. Each approximation level
adapts over time.
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Figure 13: Run-time hierarchy update cost per frame of the
collapsing horse and galloping horse sequences.

7. Conclusion & Future Work

We have presented a multi-resolution representation suitable
for deforming meshes that allows incremental improvements
to the hierarchy via reclustering. By storing mesh connectiv-
ity at each level of the hierarchy, we can guarantee that only
valid updates are performed. Our representation also enables
the induced connectivity changes to be progressively played

back in real-time, providing an encoding suitable for ani-
mation. Once the hierarchy has been updated to the desired
frame, various approximations can be extracted from it in an
adaptive manner.

Our technique works quite well; however, there are a number
of intersting directions for future research stemming from
our work. Currently, we do not allow clusters to evaporate
completely, because it would complicate hierarchy main-
tenance. This can result in the algorithm getting “stuck”
unecessarily in a constrained local minimum. Removing
this restriction is an avenue that will be investigated. Also,
our progressive representation of connectivity changes over
time has the potential to become the basis for a compres-
sion scheme for non-static connectivity, since the degener-
ate set differences can be thought of as connectivity residu-
als. In combination with a vertex-based animation compres-
sion scheme, such as [AM00], it may be possible to pro-
duce an effective compression scheme for an entire multires-
olution representation of a deforming mesh, without com-
pletely throwing away its connectivity as is done in geome-
try videos [BSM∗03].
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