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Abstract

The growing availability of massive polygonal models, and the in-
ability of most existing visualization tools to work with such data,
has created a pressing need for memory efficient methods capa-
ble of simplifying very large meshes. In this paper, we present a
method for performing adaptive simplification of polygonal meshes
that are too large to fit in-core.

Our algorithm performs two passes over an input mesh. In the
first pass, the model is quantized using a uniform grid, and sur-
face information is accumulated in the form of quadrics and dual
quadrics. This sampling is then used to construct a BSP-Tree in
which the partitioning planes are determined by the dual quadrics.
In the final pass, the original vertices are clustered using the BSP-
Tree, yielding an adaptive approximation of the original mesh. The
BSP-Tree describes a natural simplification hierarchy, making it
possible to generate a progressive transmission and construct level-
of-detail representations. In this way, the algorithm provides some
of the features associated with more expensive edge contraction
methods while maintaining greater computational efficiency. In ad-
dition to performing adaptive simplification, our algorithm exhibits
output-sensitive memory requirements and allows fine control over
the size of the simplified mesh.

Keywords: surface simplification, massive meshes, quadric error
metric, recursive partitioning, out-of-core simplification

1 INTRODUCTION

Recent advances in three-dimensional model acquisition and ter-
tiary storage technology have resulted in the wide availability of
massive geometric data sets. The Digital Michelangelo Project [15]
at Stanford University has produced finely detailed polygonal
meshes containing up to two billion triangles. In the scientific do-
main, the Visible Human Project has generated data sets of over 10
billion voxels, while the DOE ASCI project has a goal of visualiz-
ing multi-gigabyte iso-surface datasets.

The enormity of these models poses serious challenges for visu-
alization. Current workstation technology is completely incapable
of rendering them in real-time. In the case of polygonal meshes,
applying a simplification algorithm would seem to be a reasonable
approach. Unfortunately, most traditional simplification algorithms
have memory and processing time requirements that are far too high
to handle massive data. Relatively few can process million-face
models, and meshes with hundreds of millions of faces are far be-
yond their capacity. Moreover, many of these algorithms require
random access to the mesh data, and so cannot be easily adapted to
work efficiently on meshes exceeding the size of main memory. As
a result, these algorithms perform poorly, or not at all, when applied
to the very meshes most in need of simplification. To date, only
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uniform clustering has been successfully applied to truly massive
models. However, the approximations generated with this method
can display artifacts related to the regularity of the sampling grid.

In order to work efficiently with very large data, we believe an
algorithm must obey several key constraints. Since the magnitude
of the input data will exceed memory capacity, it is critical that
the size of in-core data structures be independent of the input size.
Expensive operations, such as simplification, must be performed
only on data held in-core. Since the input data is kept out-of-core,
access must be limited to a small number of linear scans in order
to maintain efficiency. Adhering to these principles, we have de-
signed a memory efficient algorithm for adaptive simplification of
massive polygonal meshes. While it maintains computational ef-
ficiency close to that of uniform clustering, our method can yield
higher quality approximations. The algorithm can be thought of
as a three step process which begins by quantizing the input mesh
using a uniform grid. This grid is used to accumulate surface infor-
mation in the form of quadrics and dual quadrics, which are used
to characterize the local shape of the surface. In the second step,
this geometric information is used to build a data structure that ef-
fectively partitions the vertices of the model. Finally, the original
mesh is simplified using this partition information.

Employing an effective vertex partitioning method is critical to
both the performance of the algorithm and quality of the simpli-
fied mesh. Inspired by the R-Simp method of Brodsky and Wat-
son [3], we have developed a spatial clustering technique based
on BSP-Trees [24]. This choice has several appealing properties.
Simplification proceeds from a coarse to fine level, allowing us to
efficiently generate very coarse approximations of large meshes.
Our BSP structure is adaptive, with the planes chosen according to
heuristics based on the local geometry of the mesh. Also, the natu-
ral hierarchy provided by the BSP-Tree makes it particularly suited
for applications such as progressive transmission and constructing
level-of-detail hierarchies. While R-Simp shares these characteris-
tics, it can only operate on meshes small enough to fit in-core. By
employing a quantization phase and new heuristics for constructing
the BSP-Tree, the algorithm we present is capable of simplifying
models orders of magnitude larger than those suitable for R-Simp.

The primary contribution of the work described in this paper is
a novel algorithm for efficient, adaptive simplification of massive
meshes. This simplification algorithm is memory efficient, con-
suming memory in proportion to the size of the output mesh. It is
also time efficient, yielding running times that are competitive with
uniform simplification. Since only two linear scans are made over
the input data, the algorithm can scale to handle massive datasets.
Finally, our algorithm is, to our knowledge, one of the few methods
able to perform adaptive surface simplification of a massive mesh.
It may be the only method able to do so efficiently.

2 PREVIOUS WORK

Polygonal simplification [7, 4] has been an area of active research
for close to a decade. Optimal approximation of a surface is known
to be NP-Hard [1], and hence most research has focused on de-
veloping heuristic methods. The fundamental principle underlying
most of these methods is that of partitioning the vertex set of a mesh



into disjoint clusters and unifying the vertices within each cluster.
This process of vertex unification will cause some faces in the mesh
to degenerate into edges or points. The end result is a polygonal sur-
face approximation with fewer vertices and faces. Simplification
methods are generally differentiated based on how they construct
the partition of the vertex set. One of the more common approaches
is the application of iterative edge contraction.

Iterative edge contraction has become arguably the most popu-
lar heuristic framework. Techniques based on this operation select
a pair of vertices at each iteration and replace them with a single
vertex, removing any triangles that degenerate. This process effec-
tively partitions the original vertex set, as each vertex in the approx-
imation represents a set of vertices that have been contracted to-
gether. Edge selection is generally accomplished through a greedy
strategy, with the cost of an edge contraction being related to the
error it induces in the approximation. The quadric error metric, in-
troduced by Garland and Heckbert [9], has proven to yield good
results in practice.

Unfortunately, edge contraction algorithms are not well-suited to
work on massive meshes. They typically employ a priority queue
of possible contractions, resulting in memory consumption propor-
tional to the size of the original mesh. This is clearly untenable for
extremely large models. Even if this obstacle is overcome by us-
ing out-of-core data structures, the order of contraction operations
will often exhibit little locality, meaning each contraction will be
expensive. Given the large number of contractions required to sat-
isfactorily simplify a massive model, the cost of such a computation
is prohibitive. Rather than resorting to out-of-core data structures,
several authors, Bernardini [2], Hoppe [13] and Prince [21] in par-
ticular, have proposed methods in which a mesh is segmented so
that each piece fits in main memory. The pieces are then simpli-
fied in-core, with the boundary edges preserved so the segments
can be rejoined. This process is iterated, with new boundary edges
chosen each time. While this solution is conceptually appealing,
the segmenting and rejoining operations are expensive, making this
approach less attractive for very large meshes. El-Sana and Chi-
ang describe a somewhat similar method [6] for out-of-core view-
dependent refinement. Initial simplification is accomplished using
an out-of-core priority queue in combination with segmentation.
The result is an out-of-core structure that supports rendering of
large meshes using levels-of-detail. While the authors achieve in-
teractive frame rates for some large models, the preprocessing time
is significant.

Another popular simplification framework, and one more suited
to large models, is spatial clustering. These methods spatially par-
tition a vertex set into clusters and unify all vertices within a given
cluster. Rossignac and Borrel developed one of the earliest clus-
tering algorithms [22]. Their method partitions a vertex set using
cells defined by a rectilinear grid. A representative vertex is syn-
thesized for each cell. When triangles from the original mesh are
mapped onto these new vertices, many faces degenerate into points
or lines and are discarded, thereby simplifying the model. Low
and Tan [19] proposed an adaptive variant of this technique, called
floating-cell clustering, which ranks the vertices of a model by im-
portance and iterates over the vertex set. In each iteration, a cell
of user-specified size is centered on the most important vertex and
all vertices falling within that cell are merged. The hierarchical dy-
namic simplification system of Luebke and Erikson [20] constructs
a vertex tree, essentially a hierarchy of vertex clusters, that is used
to provide view-dependent simplification at runtime.

Recently, Lindstrom [16, 17] extended the Rossignac-Borrel al-
gorithm to work on models too big to be held in-core by formatting
the input mesh as a polygon soup. Reading the model off disk in
single linear scan, vertices are clustered and degenerate faces dis-
carded. The quadric error metric is used to position the represen-
tative vertices, resulting in higher quality output than the original

Rossignac and Borrel method.

While uniform clustering offers great efficiency, there are cases
where the uniformity of the grid causes undesirable artifacts in the
approximation. No feature on the input model smaller than a grid
cell can be retained using uniform clustering. Also, large flat re-
gions will be over-tessellated and the vertices in the output mesh
will be distributed more or less evenly due to the structure inher-
ent in the grid. Ideally, one would prefer to simplify using smaller
polygons in areas with fine features and larger polygons elsewhere.
The R-Simp algorithm of Brodsky and Watson [16] employs an
adaptive vertex clustering technique to achieve this end. R-Simp
builds a spatial decomposition by recursively splitting cells using
the curvature of the model to determine the splitting planes. At
each step, the cell exhibiting the greatest amount of area weighted
curvature is split. This process continues, essentially proceeding
from coarse to finer approximations, until the desired resolution is
obtained. While this algorithm is more efficient than edge contrac-
tion methods, it cannot easily be used for processing large meshes.
Computing the area weighted normal variation and finding a split-
ting plane for a cell both require an examination of all the mesh
faces contained in the cell. Keeping the model in external memory,
a necessity for massive data sets, would result in these operations
being prohibitively expensive.

Rusinkiewicz and Levoy [23] describe an out-of-core multi-
resolution rendering system, QSplat, built around point-rendering
rather than mesh simplification. QSplat uses a bounding sphere hi-
erarchy to define an external memory representation for very large
meshes. Rendering is accomplished by generating “splats” for each
sphere in a cut through the hierarchy. While this system works quite
well, there are applications where having an actual surface, such as
a simplified mesh, is advantageous. Many existing rendering sys-
tems are geared toward polygonal data and can more readily work
with a mesh based representation. Also, Hubbard [14] showed that
bounding sphere hierarchies based on octrees do not generally fit
surfaces well enough to provide accurate time-critical collision de-
tection. We would expect the bounding boxes used to construct the
QSplat hierarchy might suffer from the same problem. It is in-
teresting to consider that the vertex clustering method we present
could be used to build an adaptive bounding volume hierarchy suit-
able for the QSplat rendering engine.

3 QUADRIC QUANTIZATION

The initial step of our algorithm is to perform quadric quantiza-
tion of the input mesh. This process begins by computing a dense
partition of space and accumulating quadrics in the cells of the par-
tition. We have chosen to implement this partition, like Lindstrom,
as a uniform grid. The benefit of this approach is that it is possible
to build such a grid without reference to the original mesh beyond
knowing a bounding box. Touching the original data as little as pos-
sible is essential to maintaining efficiency when working with large
data sets.

Our algorithm relies on the quadric and dual-quadric error met-
rics introduced by Garland and Heckbert [9, 10] to encode informa-
tion about the geometry of a model in a memory efficient manner.
Only ten coefficients are required to store a quadric, and the addi-
tive properties of quadrics enable information to accumulate within
a grid cell without increasing the size of the data.

3.1 Quadric Metric

The primal quadric metric effectively measures the sum of squared
distances from a vertex to a set of planes. Consider that each face
in a mesh defines a plane which satisfies the equation nv' +d = 0,
where n is a unit normal. The squared distance of a vertex v to this
plane can be represented using a quadric Q:



(a) 28,184,526 ver-
tices (Original)

(b) 107,872 vertices
(0.3%) time=17:02

(c) 50,000 vertices (d) 5000 vertices (e) 1000 vertices
(0.1%) time=16:10

(0.01%) time=13:48 (0.003%) time=12:21

Figure 1: Progressive approximations produced by our algorithm.
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Q(v)=v'Av+2b'v +ec

To compute the sum of squared distances to a set of planes, we only
need a single quadric that is the sum of the quadrics defined by each
of the individual planes.

In addition to its utility as an error metric, the quadric matrix
also encodes information about the curvature of the associated set
of planes. The 3 x 3 matrix A is the sample covariance matrix of the
set of normals, with mean [0, 0, 0]. If the eigenvalues of the matrix
are ordered from smallest to largest, the corresponding eigenvectors
are the direction of minimum normal variation, maximum normal
variation, and the average normal. For a smooth surface, the direc-
tions of minimum and maximum normal variation approximate the
directions of minimum and maximum curvature [8].

3.2 Dual Quadric Metric

Just as the quadric metric encodes distance from a point to a set of
planes, the dual quadric [8, 10] measures distance from a plane to a
set of points.

Given a set of vertices {v1, ..., vi }, we define the dual quadric
as

P, = (Dy,ei, fi) = (vivi ', vi, 1)
Pi(n7 d) = nTDin + 2eiT(dn) + fidQ

Given a set of vertices {v;}, summing the dual quadrics over all
the vertices we have

P=(Dief) = (S D, Yo S f)

This allows us to express the covariance matrix for the set as

eeT
This formulation neglects the k—ll averaging factor typically used
in computing a covariance matrix, but the eigenvectors and the rela-
tive scale of the eigenvalues are unchanged by this. The eigenvector
corresponding to the smallest eigenvalue is in fact the normal for the
least squares best plane through {v;}. The eigenvector associated
with the largest eigenvalue is the direction in which {v;} exhibits
the most spread.

3.3 Quantizing the Mesh

A quadric quantization is generated in a straight-forward manner.
We simply scan a file describing the input mesh and hash the ver-
tices of the mesh into a table describing a uniform spatial decompo-
sition. In constructing this uniform grid, we assume the bounding
box of the model is known. This is a modest requirement; most
model acquisition methods can provide such information, and in
any case, it is trivial to compute a bounding box by performing an
extra linear scan of the mesh.

Each vertex in the mesh generates a dual quadric that is added
to the containing grid cell. Keeping the standard assumption that
faces are described as triangles, each face will generate a quadric
which is then added to the three cells associated with the vertices
of the face. In our current implementation, the input mesh is de-
scribed as an indexed face set held in a file on disk and is accessed
via memory-mapped 1/0 managed by the operating system. The
need to look up the vertices corresponding to the face indices could
be problematic if the face set is described without locality. In such
a situation, vertex information would repeatedly be read from disk
and thrashing would likely occur. Lindstrom’s method is able to
guarantee locality, at the expense of increased disk space, by rep-
resenting the model as an unindexed polygon soup. While nothing
prevents our algorithm from adopting a similar strategy, all of the
models we have worked with so far have exhibited enough locality
that generating a polygon soup representation has been unneces-
sary.

4 SIMPLIFICATION ALGORITHM

After quadric quantization of a model, our algorithm builds an
adaptive data structure describing a spatial partition which is used
to cluster the vertices of the model. Since working with the orig-
inal mesh is virtually impossible to do efficiently, we rely instead
on the quadric information gathered during the quantization step.
The algorithm described by Lindstrom [16] uses such a grid to di-
rectly produce a simplified version of the model, with the size of the
grid determining the size of the simplified mesh. In our algorithm,
the grid is only employed as an intermediate approximation to the
original mesh. This approximation is used to generate an adaptive
spatial partition. Increasing the size of the uniform grid increases
the quality of the approximation and resulting spatial partition, but
does not directly affect the size of the simplified mesh. It should be



noted however, that the number of vertices in the simplified mesh
is bounded above by the number of occupied cells in the uniform
grid.

We chose to implement this spatial partition by constructing a
BSP-Tree. Inspired by the R-Simp system of Brodsky and Watson,
this approach has several appealing characteristics. It describes a
natural simplification hierarchy, in which any cut through the tree
describes a valid simplification. The generation of a such a hierar-
chy is a feature lacking in most spatial partitioning methods, but is
generally provided by more computationally expensive simplifica-
tion methods based on edge contraction. The hierarchy defined by
the BSP-Tree enables applications such as progressive transmission
and makes it easy to construct continuous levels of detail. Each in-
terior node in the tree describes a vertex split from a single vertex
into two vertices. This action is represented by the interior node
being linked to two children. Although we have not implemented
it, one could use the information provided by the the tree to perform
vertex split and contraction operations within a view-dependent re-
finement system. Generating such a level-of-detail hierarchy is
more difficult with uniform clustering, since the size of the sim-
plified mesh is related to the grid resolution and difficult to control
in an exact fashion. The BSP-Tree offers exact control over the size
of output mesh; since each leaf generates a single vertex we simply
split leaves until the desired number of vertices is reached. Figure
1 shows a set of progressively coarser approximations generated by
our algorithm.

4.1 BSP-Tree Construction

Following quantization, we generate a representative point for each
occupied cell in the quantization grid. The placement of this point
is chosen to minimize the primal quadric error. These points are
then inserted into a BSP-Tree. Each point carries with it a set of
associated data, including the quadric and dual quadric from the
grid cell it represents. The BSP-Tree initially has a single node
containing all of the representative points.

We keep a priority queue containing the leaves of the BSP-Tree,
keyed off of the primal quadric error for the leaf. Each leaf will
likely contain many representative points, and the primal quadric
for a leaf is simply the sum of the primal quadrics associated with
those points. Similarly, the dual quadric for the leaf is the sum
of the dual quadrics associated with the representative points. The
construction of the tree proceeds as follows:

Until the desired number of leaves are created:
1. Choose the leaf with largest quadric error
2. Create a split plane using the dual quadric
3. Divide the leaf and enqueue the 2 new leaves

Each leaf in the tree will correspond to a vertex in the simpli-
fied model. By always splitting the leaf with the largest error, the
algorithm introduces more vertices, and thus more detail, in areas
that are poorly represented by a single vertex. The adaptivity that
results from this process can be seen in Figure 2, showing the spa-
tial partitions across the the surface of a model. Here, a sphere
is positioned at the center of each vertex cluster generated by the
BSP-Tree, with the size of the sphere related to the diameter of the
cluster. Notice that the clusters are smaller and more numerous in
areas of high-detail.

Our method for determining the splitting planes of the BSP-Tree
is similar to the technique used by Gottschalk, Lin, and Manocha
to build OBB-Tree bounding volumes [11]. Both rely mainly on
point-set covariance, although the OBB-Tree computation involves
sampling across the convex hull of the point set. Our algorithm
uses the dual quadric associated with a leaf to determine a splitting

Figure 2: Adaptive vertex clustering on a polygonal mesh

plane. In the BSP-Tree, each leaf effectively specifies a space de-
fined by a series of half-space intersections. Using the dual quadric,
we are able to approximate the directions in which the vertex posi-
tions of the original mesh exhibit minimum and maximum spread.

Once we have determined which leaf to split, the eigenvectors
and eigenvalues of the point set covariance matrix associated with
that leaf are extracted. If the piece of mesh within the space cor-
responding to the leaf exhibits coherent point spread, it will likely
look something like a rectangular patch. If we consider how to
split this patch with a single plane to obtain a good approxima-
tion, it seems reasonable to choose a plane cutting perpendicular to
the direction of greatest point spread. An edge connecting the two
cells resulting from this split would run in the direction of maxi-
mum point spread, essentially using a line to approximate the patch
lengthwise. In the event that the patch does not exhibit coherent
point spread, it is possible that there are actually multiple surface
sheets contained within the space associated with the leaf. In this
case, we choose the normal of the splitting plane to be the direction
of minimum point spread. This is done in hopes of keeping separate
sheets from collapsing together.

These heuristics are implemented by examining the eigenvalues
of the point set covariance matrix. If the ratio of largest to small-
est is significant, the magnitude of variation is clearly greater in the
direction of maximum spread and it is more likely the patch is co-
herent. In this case, the normal of the splitting plane is the direction
of maximum spread. If, however, the ratio of the eigenvalues is less
than 2, the surface information is considered to be incoherent and
the normal of the splitting plane is chosen to be the direction of
minimum point spread. In either case, we position the plane so that
it passes through the mean vertex position, which can be extracted
from the dual quadric.

4.2 Simplification

After the tree is constructed, we execute a second scan of the orig-
inal model. For each face in the model, we must distribute the
quadric to the leaves of the BSP-Tree containing the three vertices
of the face. Each vertex is mapped to a leaf of the BSP-Tree by
walking down the tree and testing the vertex against each plane on
the path. If the three vertices fail to map to three different leaves,
the face degenerates and is discarded. Once this scan is complete,
a representative vertex position is computed for each leaf using its
associated quadric. The simplified mesh consists of these vertex
positions and the non-degenerate faces.

This second scan of the model is required because the vertex
clusters, and hence the quadrics associated with each leaf, gener-



Grid dimensions  Memory (MB)  Error

15x36x 15 15 127 x 1077 9.0
30x72x30 25 9.3 x 1077 9.6
60x 144 x 60 34 9.0 x 1077 10.0

Time (sec)

Table 1: Simplification performance on the Stanford Buddha model
as a function of grid resolution. The model was simplified from
543,652 to 812 vertices.

ated by the second pass will almost certainly differ from those com-
puted during construction of the BSP-Tree. During the construc-
tion phase, the algorithm operates on representative points gener-
ated from the cells of the quantization grid. Each representative
point has an associated quadric and dual quadric which are com-
puted from the the vertices that fall into a particular grid cell. When
a leaf is split during construction, these quadrics are added to one
of the new leaf nodes resulting from the split. This leaf node is
chosen based on the relationship of the representative point to the
splitting plane. Unfortunately, not all of the vertices that generated
the quadrics will necessarily lie on the same side of the plane. In
many cases, the splitting plane might bisect the grid cell and the
vertices will fall on both sides of the splitting plane. Re-clustering
the original vertices, and generating new quadrics, removes this in-
accuracy.

4.3 Memory Efficiency

The vast majority of memory use occurs in the construction of
the quantization grid and the BSP-Tree. Since the size of each of
these structures is essentially a function of the size of the simplified
model, the algorithm maintains memory efficiency even when faced
with very large input. The resolution of the quantization grid must
be at least equal to the desired number of vertices in the simplified
model. Since relatively few cells in the grid end up being occupied,
the resolution will often need to be higher still, but it remains un-
related to the size of the original mesh. Implementing the grid as a
hash table helps to limit the excess memory allocation required to
generate a particular number of representative points.

Increasing the resolution of the grid, while holding the number
of vertices in the simplified model fixed, decreases approximation
error. This effect is illustrated in Table 1. Here, a model with
543,652 vertices and 1,087,716 faces is simplified down to 812 ver-
tices. The increase in grid size results in greater memory use for
both the hash table and the BSP-Tree, since more representative
points will be held in the tree. A four-fold increase in the size of
the grid in each dimension yields about a thirty percent reduction in
error.

The amount of memory used by the BSP-Tree is directly related
to the size and quality of the resulting approximation. Each vertex
in the simplified mesh corresponds to a leaf in the tree. The total
number of nodes in a tree with n leaves will be 2n—1. In our current
implementation, each node has a memory footprint of 160 bytes. In
addition, each occupied cell in the quantization grid uses 144 bytes
of storage. Since the size of the quantization grid is related to the
desired quality of the approximation, and therefore is user-defined,
it is difficult to derive a formula for theoretical memory usage. In
comparing our method to that of Lindstrom, we can say that we will
use several times the memory required by his algorithm. In gener-
ating approximations with the same number of vertices, our algo-
rithm must use a quantization grid larger than the grid employed by
uniform clustering in order to generate a better quality approxima-
tion. In addition, our grid cells will store twice as much quadric
information. However, since both the grid and tree resolution are

determined by the desired quality and size of the simplified mesh,
memory consumption for our algorithm remains completely inde-
pendent of input size. Moreover, adjusting the quantization grid al-
lows one to affect the error of the approximation without changing
the approximation size. Uniform clustering, in which changing the
grid size changes the size of the simplified mesh, lacks this feature.

4.4 Discussion

While our method was inspired by the R-Simp system of Brodsky
and Watson, there are key differences. Most significantly, by em-
ploying an initial quantization step, our algorithm is able to operate
on meshes too large to fit in-core, whereas R-Simp is confined to
operating on meshes small enough to fit in memory. The algorithms
also differ in how they construct the adaptive spatial subdivision
used to simplify the input mesh. Our determination of which leaf in
the tree to split uses a different metric, as does our construction of
splitting planes. R-Simp splits the cell in which the face normals
exhibit the most variation, while we choose to split the leaf with
the largest primal quadric error. In constructing splitting planes, R-
Simp will often need to gather normal and midpoint information for
every face in a cluster. It also performs a topology check to guaran-
tee disconnected components within a cell are in fact separated by
the splitting plane. Our BSP-Tree relies on the eigenvectors of the
dual quadric, corresponding to the directions of minimum and max-
imum point spread, to generate a plane. Using point-set covariance
in this manner allows us to construct a plane without requiring ac-
cess to the geometry and topology of original surface, which would
be prohibitively expensive.

While we chose to work with point distribution information for
reasons of efficiency, we also believe there are situations which
make this approach preferable to constructing splitting planes based
on the curvature information contained in the primal quadric. Con-
sider an almost planar surface with high-frequency perturbations
running along it. The pattern of normal variation might be un-
clear because of the bumps, but the point set covariance matrix will
still allow a good approximation of the surface in the form of the
least-squares best fit plane. At the beginning of the simplification
process, encountering an ambiguous pattern of normal variation is
almost assured. The first few split planes will be computed with
regard to almost all of the faces in the mesh, making it unlikely that
a coherent pattern of curvature will be discernible.

The use of quadric quantization to construct a spatial partition
allows our algorithm to work on very large meshes, and we empha-
size that large, over-tessellated meshes are the intended domain of
our method. We do not intend this algorithm to be a replacement for
more traditional simplification methods; polygonal models small
enough to fit in-core are best handled using other algorithms. Also,
as a general caveat, all spatially-based clustering methods tend to
produce approximations with altered topology. Generating or clos-
ing small holes and creating self intersections are common occur-
rences; manifold surfaces will likely be approximated by a non-
manifold surface. When the approximation is intended for visual-
ization these artifacts tend not to be significant, but they should be
considered if the intended application is sensitive to such changes.

5 RESULTS

To evaluate the performance of our algorithm, we implemented
both it and the uniform clustering method described by Lind-
strom [16]. We should note that our implementation differs from
his in that we used the quadric metric as originally formulated by
Garland and Heckbert rather then the one described in [18]. Also,
we did not implement the singular value decomposition step for
robust inversion of quadric matrices that he suggests. Neglecting
these details should have little impact on comparative evaluation as



Vertices Avg. Error (x1079) Time (sec)
Model Input Output  Adaptive ~ Uniform  Adaptive  Uniform
Buddha 543,652 5644 68.0 79.0 17 7
Buddha 543,652 41,638 8.1 8.9 24 8
Dragon 437,645 1077 1319.0 1700.0 10 4
Dragon 437,645 5183 70.0 79.0 13 5
Matthew 3,382,866 9280 - - 102 46
Lucy 14,027,872 14,818 - - 425 190

Table 2: Comparison of uniform and adaptive clustering. Due to
the input size limitations of the error tool, error information is un-
available for St. Matthew and Lucy models.

both of our implementations will be impacted by their lack. More-
over, nothing in our adaptive clustering algorithm would prohibit
the implementation of these features.

In order to evaluate the error in an approximation, we created a
tool that samples both the original and simplified models at their
vertices and computes the distance between the two surfaces at
those points. This error metric is similar to the one employed by
Hoppe [12] and the tool Metro [5]. The tool begins by computing
the distance from each vertex in the original mesh to the simplified
mesh. A second pass computes the distance from each vertex in the
simplified mesh back to the original mesh. The average of all these
distances is then taken to be the average error. Table 2 summarizes
the results of our experiments, which were run on a standard Linux
PC with an 800 MHz P3 processor, 256 MB of memory, and a SCSI
disk.

In general, the adaptive algorithm produced better quality ap-
proximations. In the case of the coarse approximations of the
dragon and Buddha models, error was reduced by about 20 per-
cent. Finer resolutions mirror this behavior, but error reduction
is only around 10 percent in those cases. The time required to
simplify adaptively varied from around 2.5 to 3 times as much as
that required for uniform clustering. This corresponds to expec-
tations, since the adaptive method effectively simplifies the mesh
twice while the uniform method does so only once. The size of the
quantization grid used in the adaptive simplification process was
larger than the grid used for the uniform clustering by a factor of
four in each dimension.

Figure 3 shows how the error was distributed across a Buddha
model simplified from 543,652 to 812 vertices by both uniform and
adaptive clustering. Increasing error is denoted by a color progres-
sion from blue through green and yellow to red. The color scales
are the same for both images. It appears that uniform clustering
generally introduced more error in regions of high curvature such
as the nose and flower. While exhibiting less error in such highly
curved areas, adaptive clustering had greater difficulty generating
a good approximation of planar surfaces, as witnessed by the error
seen across the base of the model.

Both the Lucy and Saint Matthew models are too large to esti-
mate surface error in the manner applied to the Buddha and dragon.
A visual comparison of some results are shown in Figure 4 and
Figure 5. To highlight the differences, these images are the result
of very aggressive simplification, an order of magnitude beyond
those shown in [16]. Figure 5 shows two simplified versions of the
Lucy, one produced using uniform clustering, the other with our
adaptive method. The uniform clustering version displays more ar-
tifacts on the wings, both spiking and notching, than the adaptive
version does. The spikes are related to a cell enclosing two nearly
parallel sheets of the surface, a case in which quadric vertex place-
ment can yield a vertex position outside the cell. The version of
uniform clustering proposed by Lindstrom implements a clamping

scheme to deal with such situations. Another significant difference
between the approximations occurs in the detail around the face of
the statue. At this resolution, uniform clustering has removed most
of the mouth and nose, and the head has started to sink into the
neck. Adaptive clustering is able better able to alter the size and
distribution of polygons in the approximation. As a result, the face
has retained much more distinct features, particularly at the eyes
and neck. In other portions of the statues, the adaptive version pro-
duced a better approximation to the torch while uniform clustering
displayed better ability handling the sharp border of the base.

In the case of the Saint Matthew approximations, shown in Fig-
ure 4, the regularity of the uniform grid can be seen in the approx-
imation. The lines of a checkerboard pattern are visible around
the chin and cheeks. The approximation generated by our adaptive
method does not exhibit this artifact. Some features, such as the
nose, seem sharper in the adaptive version. In both cases, the lack
of boundary constraints has caused the mesh to be eaten away along
the border.

While perhaps not obvious in these images, the adaptive simpli-
fication method has a greater propensity to join spatially separated
sections of the mesh than uniform clustering does. In the Lucy ap-
proximations for example, the adaptive simplification often joins
the raised arm with the wing while uniform clustering rarely does.
An even clearer example of this behavior can be seen in the coars-
est approximation shown in Figure 1. The cell size of a uniform
grid, even without clamping, usually limits how far a representative
vertex can drift from the original vertices in a cell. Our adaptive
spatial partition offers no such bound, which is in effect the price
paid for adaptivity. While variable cell size allows more polygons
in areas of high detail and fewer polygons in more planar regions,
it also implies that a poor choice of splitting plane can result in a
representative vertex moving far from the original mesh. We hope
to avoid this artifact in the future by designing more complex rules
for the placement of splitting planes.

6 CONCLUSION

We have described an adaptive surface simplification algorithm ca-
pable of efficiently producing high quality approximations of mas-
sive polygonal models. Our experiments have demonstrated that
approximations generated using this algorithm do not display arti-
facts associated with the imposition of an artificial grid. As a result,
the quality of these approximations can exceed the quality of ap-
proximations produced by uniform clustering. The execution time
remains competitive with that of uniform clustering. The key to the
algorithm is the three step process of quadric quantization, partition
construction, and simplification. This process yields a simplifica-
tion hierarchy, making it possible to create a level-of-detail repre-
sentation or generate a progressive transmission without resorting
to a computationally expensive edge contraction algorithm.

We see several opportunities for further research. The quality of
our simplified models would be enhanced if we could prevent un-
necessary joining of elements in the mesh. We believe this can be
accomplished by a more judicious choice of splitting planes, per-
haps requiring additional information be accumulated in the quan-
tization phase. Second, the simplification hierarchy implicit in the
BSP-Tree produced by the algorithm can be leveraged to provide
progressive transmission and perhaps a file format describing a sur-
face based multi-resolution model.
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(a) Uniform Clustering (b) Adaptive Clustering

Figure 3: Error distribution on the Buddha model.

(a) Original (b) Uniform Clustering (c) Adaptive Clustering

Figure 4: Face of St. Matthew, simplified from 3,382,866 vertices to 3,225 vertices.

(a) Original (b) Uniform (c) Adaptive (d) Uniform (e) Adaptive

Figure 5: Lucy statue, simplified from 14,027,872 to 5,461 vertices.



