IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Visual Exploration of Complex Time-Varying Graphs

Gautam Kumar and Michael Garland

Abstract— Many graph drawing and visualization algorithms, such as force-directed layout and line-dot rendering, work very well
on relatively small and sparse graphs. However, they often produce extremely tangled results and exhibit impractical running times
for highly non-planar graphs with large edge density. And very few graph layout algorithms support dynamic time-varying graphs;
applying them independently to each frame produces distracting temporally incoherent visualizations. We have developed a new
visualization technique based on a novel approach to hierarchically structuring dense graphs via stratification. Using this structure,
we formulate a hierarchical force-directed layout algorithm that is both efficient and produces quality graph layouts. The stratification
of the graph also allows us to present views of the data that abstract away many small details of its structure. Rather than displaying
all edges and nodes at once, resulting in a convoluted rendering, we present an interactive tool that filters edges and nodes using the
graph hierarchy and allows users to drill down into the graph for details. Our layout algorithm also accommodates time-varying graphs
in a natural way, producing a temporally coherent animation that can be used to analyze and extract trends from dynamic graph data.
For example, we demonstrate the use of our method to explore financial correlation data for the U.S. stock market in the period from
1990 to 2005. The user can easily analyze the time-varying correlation graph of the market, uncovering information such as market

sector trends, representative stocks for portfolio construction, and the interrelationship of stocks over time.

Index Terms—Graph and network visualization, financial data visualization, hierarchy visualization, time series data.

1 INTRODUCTION

Effectively visualizing large sets of relationships is a growing need in
many fields. In contexts such as social networks, telecommunications,
Internet networks, homeland security, and financial research, graph
visualization is a standard form of extracting and conveying informa-
tion. In all of these contexts, graphs are becoming increasingly com-
plex, and in many cases, the graph structure changes over time. Force-
directed layout algorithms, which attempt to find a minimal energy
configuration, work well for visualizing relatively sparse static graphs.
However, when applied to complex highly non-planar datasets, these
spring-based methods are slow to converge and frequently produce ex-
tremely tangled results. When rendered with the conventional line-dot
technique, the resulting graph is often so cluttered that the user is un-
able to recognize many important patterns within the complex data.
Moreover, many graph visualization tools often overlook the handling
of time-varying graphs and don’t preserve temporal coherence. The
resulting animation from laying out frames in dynamic graphs inde-
pendently exhibits spurious movements from frame to frame, masking
motion due to actual structural changes. As graphs become progres-
sively more complex and dynamic, solving this problem will become
vital to graph analysis.

We have developed an interactive visualization technique in which
users explore a hierarchical representation of a complex graph, en-
abling rapid discovery of meaningful structure among the nodes. We
construct a graph hierarchy by stratifying nodes into different levels
so that central and representative nodes in the graph are emphasized.
Nodes are then organized into interconnected groupings in a tree, en-
abling tree families to be placed close to each other in our layout al-
gorithm. In contrast to prior work where graph hierarchies are built by
repeated coarsening, we construct our hierarchy based on edge distri-
bution. In many cases, complex non-planar graphs have vertex degrees
distributed according to a power law, and our stratified hierarchy ex-
poses the underlying structure of such graphs.

Based on the graph hierarchy, we also propose a new global/local
layout scheme that recursively traverses the hierarchy and rapidly con-

o Gautam Kumar is with the University of Illinois at Urbana-Champaign,
E-mail: gvkumar@uiuc.edu.
o Michael Garland is with NVIDIA, E-mail: mjgarland@acm.org.

Manuscript received 31 March 2006; accepted 1 August 2006, posted online 6
November 2006.

For information on obtaining reprints of this article, please send e-mail to:
tveg @computer.org.

verges to an aesthetically pleasing end result. Our novel local layout
algorithm uses a force-directed algorithm so that neighboring nodes
are close to each other, while also using Lloyd relaxation to ensure
the layout is well spaced. When extended to time-varying graphs, our
layout produces clear animations of dynamic graphs that preserve co-
herence across frames and ensures that any motion reflects actual data
changes. Users are thus able to easily perceive interesting structural
trends over time.

Our rendering scheme takes advantage of modern graphics hard-
ware by integrating user interaction with stylistic visual representa-
tions to abstract and explore graphs. Rather than displaying all edges
and nodes at once, which can produce a convoluted image, we filter
edges and nodes using the graph hierarchy and allow users to drill
down into the graph for details. Our visualization emphasizes related
clusters of nodes by clearly depicting cliques and families in the hier-
archy. We improve on past methods by simplifying highly intercon-
nected networks, enhancing the visual clarity of graph rendering, and
incorporating time-varying systems.

As an example application, we utilize our tool to visualize price
return correlations between stocks in the S&P 500. We construct a
graph where two stocks are connected by an edge when their returns
correlations are above a selected threshold. Such graphs are known to
have power law degree distributions [3]. Analyzing the correlations
amongst securities is central to Modern Portfolio Theory [18] where
risk is managed through diversification of investments.

2 RELATED WORK

Initially applied to relatively small and sparse graphs, early successful
graph layout algorithms were typically force-directed. This approach
was pioneered by Eades [8]. Kamada and Kawai [16] modeled a graph
as a complete system of linear springs, and Fruchterman and Rein-
gold [10] refined and simplified their force calculations. These meth-
ods are flexible and easily implemented, but their initial focus was on
graphs of only up to 100 vertices. On larger, denser graphs (e.g., with
power law edge distribution) they converge slowly, if at all [15], and
the results were often cluttered and disorganized.

More recently, many interesting approaches to visualizing com-
plex highly non-planar graphs have been developed. Harel and Ko-
ren [15] developed a multi-scale algorithm that can improve the run-
ning time of any force-directed method. Hachul and Junger [14] pro-
posed a multi-level algorithm using potential fields that can achieve
the same asymptotic running time as single-level methods. Ander-
sen et al. [1] partitioned edges into local and global sets and used
a force-directed method emphasizing local edges. Chan et al. [4],

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Fig. 1. Our visualization tool builds a stratified hierarchy from dense and non-planar graphs. In visualizing price correlations in the S&P 500 dataset,
our tool automatically extracts the most highly correlated stocks and clusters related stocks together in the layout.

similar to our method, stratified the graph based on degree and used
the Fruchterman-Reingold method on each layer. Rather than using
a stratified hierarchy to accelerate layout, Gansner et al. [11] use a
coarsening-based hierarchy to provide a topological fisheye view at
multiple levels of detail. Similarly, van Ham and van Wijk [24] used
an interactive fisheye scheme and spherical clustering to decompose
the graph and smoothly interpolate between various levels of detail.
Voronoi diagrams have also been integrated into graph drawing by re-
cursively decomposing screen space [22] and as a post-processing step
in laying out labeled or non-point nodes [6, 12].

Our stratification scheme makes use of prior work on node rank-
ing in order to find the most central or hub nodes. Kleinberg [17]
developed the HITS system of ranking by an authority measure.
Newman [19] developed the Betweenness-Centrality measure which
counts the number of shortest paths that pass through each node. Wu et
al. [25] tested both of these measures, in addition to random sampling
and degree ranking, when developing a data mining approach to sim-
plify and cluster power law graphs using geodesic clustering. We de-
velop our own method for ranking nodes using weights between every
pair of vertices.

In contrast to static graphs, little research has been done on visual-
ization of time-varying graphs. Most work on dynamic graph draw-
ing is related to the online problem—only information about previous
graphs is used for computing a layout. A prominent example for hier-
archical directed acyclic graphs by North [20] incrementally updates a
layout preserving the user’s mental map. Gorg et al. [13] presented an
offline approach (all graph changes are known beforehand) which also
used mental map metrics.

Although these approaches to drawing complex graphs offer signif-
icant improvements particularly in running time, most still offer little
interactivity, don’t sufficiently abstract the complexity of the graph,
and generally ignore integration with dynamic graphs. Our method ex-
tends very naturally to time-varying data by applying the same static
force-directed algorithm on the differences between frames. We are
also capable of rendering graphs using a structured hierarchy and in-
tuitive visual symbols. User interaction is organized around an ab-
stracted overview with zooming and filtering capabilities.

3 CONSTRUCTING A HIERARCHY

We use a graph hierarchy to achieve both faster convergence and better
global positioning of nodes in our layout algorithm. The hierarchy also
allows us to filter edges and nodes during rendering so that the user is
not overwhelmed by too much complexity (see Figure 2, for example).

Several other graph visualization tools [15, 11], build hierarchies
based on graph coarsening with the goal of preserving the structure
of the complex graph. However, since force-directed methods do not
work well on highly non-planar graphs, our goal is to break the com-
plex structure and achieve much more planar graphs when viewing
level by level. Therefore, our hierarchy is instead based on edge dis-
tribution and is built to reflect the underlying structure of complex
graphs. These graphs, often with power law degree distributions, lend
themselves well to a hierarchy since select nodes are highly connected
while the majority of nodes are not. For example, in an airport network
numerous regional airports can be grouped under the single major hub

Fig. 2. Our system (right) produces an S&P 500 layout lacking the clutter
typical of standard energy-based methods such as GraphViz.

airport of the region. On the other hand, graphs with uniform edge
distribution like meshes do not have an inherent hierarchy, and thus
can be sufficiently positioned using early spring-based layout meth-
ods. Since our focus is on dense non-planar graphs, we stratify the
nodes into separate layers and construct a hierarchical tree to group
interconnected nodes together. Stratification into layers based on de-
gree has been investigated by Chan ez al. [4]; however, this method
does not model the graph as a hierarchical tree and simply uses a con-
stant number of levels, namely 3, for all graphs. A tree allows our
layout algorithm to achieve better time complexity by applying the
force-directed method on each individual tree family rather than the
whole level. Also, our more sophisticated stratification emphasizes
the authority of a node more than just degree and better supports the
edge distributions of various data sets.

3.1 Sorting the Nodes by Authority

We assume that we are given a graph G = (V,E) with a weight w;;
assigned to each edge (i, j). The authority or centrality should reflect
how representative it is of a group of nodes. We rank nodes by author-
ity using the sorting factor

si= Y Wi, 6))
Jjev

where W is the mean weight of node j. This formulation is inspired by
the HITS ranking system [17]. We use squared weights to give pref-
erence to nodes that are very representative of some nodes over those
that are moderately representative of all nodes. The mean weight term
ensures that the most central nodes are also representative of other less
central nodes. By ranking the graph in this manner and visualizing the
graph level-by-level, nodes are isolated with peer nodes of similar au-
thority and the most authoritative nodes are immediately visible to the
user.

3.2 Stratifying the Graph

To stratify the nodes into levels, we must first specify the desired depth
of the tree. The user could provide this directly. However, it is typi-
cally more useful to automatically estimate an appropriate number of
levels.

KUMAR ET AL: INTERACTIVE VISUALIZATION OF COMPLEX TIME-VARYING GRAPHS

There is no truly optimal depth. Instead, we aim to find a depth that
prevents levels with too many edges (which would yield visual clutter)
while keeping the total number of levels low. Since many complex
graphs have power law vertex degree distributions, we use this as the
basis for our estimate.

We assume that the number of nodes of degree k& is Ck™P for some
constant C and § > 1. We can find C for a given graph by realizing
that the total number of nodes n is proportional to the Riemann-Zeta

function.
n

4}

Given the degree histogram of the graph, we can find the value of 8
that best fits the histogram, as shown in Figure 3.

n=CY kP =ct(p)—cC= @
k=1

oF NODES

17 35 53 n 89 107 124 142 160 178

DEGREE

Fig. 3. A power law with exponent 8 = 2 (in red) provides the best fit for
the degree histogram of the S&P 500 graph for August 1998.

Note that the useful range of § end where () is very close to 1.
Our system defaults to the range 1 < f§ < 14 since £ (14) = 1.000061,
but the user can optionally tighten this range to achieve a desirable
number of nodes in the top level. Since higher values of 8 represent
steeper power law curves, fewer levels are needed since fewer nodes
are authoritative.

Given S, the depth of the tree will be logg n. To construct the tree,
we iterate through nodes in order of authority s; and place nodes in
levels so that each level has an equal total degree.

3.3 Computing Families

Having sorted all nodes into levels, we must now pick the right parent
for each node. We iterate through nodes in sorted order and for each
node in level / > 1 we attempt to find the best parent from level / — 1.
In picking parents, we would like to avoid extremely imbalanced trees
with large branching factors, as this will lead to clutter and poor per-
formance during layout. This imbalance typically arises in power law
graphs because the most central nodes are closely related to a major-
ity of the graph, and thus appear to be good parents for most nodes.
Enforcing the restriction that parents are in the immediately preceding
level avoids this imbalance.

For a node p to be a good parent for node i, the node should have a
high weight with both p and the neighbors of p. By neighbors of p we
mean both graph neighbors (nodes sharing an edge with p) and tree
neighbors (siblings and ancestors of p in the hierarchy). The number
of common graph neighbors that a pair of nodes share is an important
factor to consider [9]. Weight with tree neighbors is equally important
to ensure that i is grouped with the correct family of nodes. Thus,
we define the parent factor of child i with parent p to be an equally
weighted sum of the weight between i and p, mean weight between
i and p’s graph neighbors, and mean weight between i and p’s tree
neighbors. We chose the parent that maximizes this measure.

This method is a fairly simple greedy algorithm and only takes into
account the tree from the root to the current level. To produce better
hierarchies, we apply an additional bottom-up relaxation phase that
augments the parenting factor with the mean weight between p and
i’s children. The quality of this parent-child relationship will prove
important since siblings will be positioned nearby during layout.

In the financial context, it has been noticed that building a hierar-
chy from price correlations tends to group stocks into industries [21].

ENERGY
1€ =TI

ev_.-*%w .V .
LA 4

ConsuMER DISCRETIONARY

Fig. 4. The 2005 S&P 500 hierarchy with nodes colored by industry.
Most siblings are in the same industry. Financials (light blue) dominate
the top level due to high correlations with many other firms.

Our hierarchy construction preserves this property. Using the S&P
500 price correlation dataset in 2005, 77% of the average stock’s tree
siblings were in the same industry (see Figure 4).

4 LAYING OUT THE GRAPH

Having constructed our graph hierarchy, we compute a planar layout of
the graph using a hierarchical algorithm. Our goal is to quickly con-
verge to a layout where related nodes are positioned close together.
The hierarchy allows us to globally position entire subtrees and then
locally beautify each group until convergence. Our algorithm com-
bines a force-directed component to move connected nodes closer to-
gether and Lloyd relaxation to fairly utilize all the available screen
space.

4.1 Allocating Screen Space

We want to ensure that all available screen space is used in layout,
avoiding unnecessary congestion and graph shrinkage. To do this, we
assign a desired area to each node before iterative layout. The total
screen space is divided between top level nodes in proportion to the
number of nodes in their subtrees. We then recursively divide each
node’s allotted space amongst its children in the same manner. From
this fair hierarchical division of space, we can create weighted Voronoi
diagrams, decompositions of space determined by distances to nodes,

for each family in the tree.
ERIFK T*Pﬁaryn*\,wk‘ﬁr{ﬂ -
é@%ﬁ XECTRX §§TH;
Y
| o greasipx KA

A
b

Fig. 6. Bottom levels of the Fidelity 2005 hierarchy. Each parent’'s
weighted Voronoi cell (left) is divided among its children (right).

Figure 6 shows how a parent’s Voronoi cell is divided among its
children based on the number of descendants. These Voronoi diagrams
are then used to integrate a kind of Lloyd relaxation [7]—nodes are
moved to the center of their Voronoi cells—into the layout algorithm.
In addition to improving space utilization, this also brings stability to
potentially unstable force-directed algorithms and encourages faster
convergence.

4.2 Iterative Layout

We combine Lloyd relaxation with a force-directed method in our iter-
ative layout algorithm. Using force-directed algorithms on multi-level

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

g

Fig. 5. The July 1995 S&P 500 graph laid out with force-directed minimization (left), plus stratification (center), and plus Lloyd-based screen

allocation (right). Running times are 416, 3, and 16 seconds, respectively.

graphs is common in visualizing large graphs [15, 14, 1, 4] since they
are easy to implement and can be quickly computed in a hierarchical
tree.

Our method involves recursively traversing the hierarchy and com-
puting layouts for each family as we move down the tree. The initial
position for each top level node is a random position in the screen
space. Since the most central nodes have the greatest effect on the lay-
out, we perform our iterative local layout algorithm on the top level
nodes alone until no node moves more than a small distance. With
nodes initially placed in a random position in the parent’s Voronoi cell,
we repeat this iterative process for each subtree. Thus, we are able
to achieve a fast and easily-implemented global/local layout scheme.
Figure 5 compares the results of our method using force-directed min-
imization alone and hierarchical relaxation without Lloyd relaxation.
Our hierarchy provides clear benefits in speed and aesthetics. Al-
though the Voronoi computation takes time, Lloyd relaxation results
in a better organization of the graph.

Our iterative relaxation scheme uses a scheduled weighting of
force-directed and Lloyd terms where early iterations consist primar-
ily of force-directed layout, smoothly transitioning to emphasize fair
allocation in later iterations. For a node i with a set of siblings S;, we
compute the force vector acting on node i during iteration k as

ff=-awi+a Y £ 3)

JES

where v; is the vector to the Voronoi centroid of node i, f;; is the force
exerted by node j on i. The transition constant o can be determined
by the user, but our experience shows that a value of & = 0.95 works
well for all datasets we have tried.

We calculate forces between nodes using the Fruchterman-Reingold
model [10] modified to account for edge weights. This model has the
advantages of both speed and ease of implementation. However, this
choice is not central to our method and other force-directed methods
could be chosen instead.

Attractive forces along an edge serve to avoid long edges and edge
intersections, and repulsive forces keep nodes from being too close
together. If A, is the area of the Voronoi cell for a node p with n),
children, the ideal distance between two children of p is

k=\/A,/n, C))

The magnitudes of the attractive and repulsive forces between nodes
at a distance d;; will be

fh=dj/k [l ==k /d;; 5)

The force vector between two nodes is thus

uij(1—wij) ff; +uijwij ff; if (i,j) is an edge,
fij= (6)

uij(1—wij) fl’] otherwise.

where u;; is the unit vector from i to j. Finally, we also enforce a max-
imum displacement limit on each node based on its parent’s allocated
space.

4.3 Extending the Layout for Time-Varying Graphs

Our iterative layout algorithm easily extends to create animations for
time-varying graphs. In many applications, graph analysis does not oc-
cur only once, but several times over a time period. Studying changes
in a network is equally, if not more, important than analyzing the struc-
ture of a static network. A central feature of our visualization tool is
the ability to use our rich graph exploration capabilities at any point
in time. Inputting a series of graphs into our program, the user can
simply slide to different time periods to explore the graph or play an
animation to discover trends.

In the static layout case, a good layout is able to position related
nodes together, maintain an aesthetically pleasing and uncomplicated
layout, and converge to a final layout quickly. In the dynamic case, we
must add another metric: preserve temporal coherence across frames
to avoid unnecessary motion caused by little or no change in the graph
relationships. To do this, we choose an offline approach in our layout
algorithm where all graph changes are known beforehand. This allows
us to emphasize trends that persist over time and de-emphasize those
that are due to minute momentary data changes.

Our financial dataset demonstrates a perfect application for visu-
alizing a graph over time. In this context, we store a separate stock
correlation array for each month in the past several years. We then use
each of these arrays as a “keyframe” in an animation. We statically
draw a graph for the first array in the time series using the iterative
static layout algorithm described in the previous section. For subse-
quent frames, the initial layout is derived from the final layout of the
preceding frame.

‘We must also modify our hierarchy construction algorithm so as to
avoid drastic (and misleading) changes in layout due to small changes
in correlation. When computing the sorting factor, we average the
weights w;; over a 3 frame window. Similarly, we average parent fac-
tors used in hierarchy creation.

Finally, we modify the weights used in our local layout algorithm
to reduce meaningless movements. The static layout algorithm scales
the force between two nodes by the weight w;;. In the dynamic
case, we instead scale by the change in weight w;; from the previ-
ous frame. This very simple change drastically reduces spurious inter-
frame movement, and allows the user to identify interesting changes
in data much more reliably.

Figure 7 compares the results of simple per-frame static layout (top)
with our temporally coherent layout (bottom). As expected, laying out
every frame separately results in large amounts of spurious movement
even though the weights are changing relatively little. Though we
smooth the layout, we also do not want to hide movement caused by
significant weight changes. We have found that our gradual smoothing
approach preserves these “shocks”, such as the market crash of 2001
where dramatic movement occurs from frame to frame.

KUMAR ET AL: INTERACTIVE VISUALIZATION OF COMPLEX TIME-VARYING GRAPHS

Fig. 7. Frames from animation of S&P 500 during 2005 both with (bottom) and without (top) temporal coherence.

5 ABSTRACTED RENDERING

In addition to supporting efficient layout, we also use the graph hierar-
chy to abstract away detail during rendering. And while most visual-
ization tools use very simple rendering models, we are able to achieve
dramatically clearer results by using modern graphics capabilities like
3D rendering, shading, and alpha-compositing.

Visualizing every edge in a large graph overwhelms the user. Most
successful visualizations simplify the graph, say by contracting or fil-
tering edges. We propose hierarchy-based filtering of edges, which
users click through to explore. Level-by-level views allow users
to view relationships between nodes of comparable authority while
avoiding edge overload as demonstrated in Figure 15.

Color-coded circles surrounding a group of nodes represent sibling
sets so that clusters become immediately evident to the user. Because
the layout is well-spaced, these circles will also be distributed well and
the regions of overlap are minimal. The hierarchical position of nodes
within these overlapping regions is still clear through color-coding.
Sibling nodes with the same parent and the circles surrounding the
sibling set are colored alike to clearly segment the graph using color.
The user may also color nodes by industry, making industry clusters
visible. An edge is only shown if the user clicks in the sibling circle of
one of the nodes of the edge. Using alpha-compositing of these circles
based on level, the user also has the perception of focusing on different
levels as in a microscope and may even zoom in to explore a family of
nodes.

Drawing the hierarchical Voronoi diagram is also a viable alter-
native, although it adds considerable expense to the frame rendering
time. More importantly, the Voronoi cells change much more signif-
icantly between frames than the circles we use, leading to disturbing
visual “popping” artifacts during animation.

Fig. 8. Drawing cliques with simple visual symbols greatly reduces vi-
sual complexity, while zooming makes local structure apparent.

In addition to filtering, we attempt to minimize the number of edges
drawn in two ways: clique simplification and forked edges. Cliques

are a major source of entanglement in graph drawings. Therefore, we
simplify cliques, as illustrated in Figure 8, by using star edge glyphs.
This avoids clutter while still allowing users to pinpoint clusters of
highly connected nodes. Inspired by confluent diagrams [5], we use
forked edges that combine all edges from a single source node to sev-
eral targets that are part of another sibling set. This can dramatically
simplify the display, as seen in Figure 9.

Fig. 9. Selecting a node highlights its neighbors in a subgraph. Clicking
a sibling set displays edges within that set, and edges to other sibling
sets are forked.

Our visualization tool also includes several interactive features to
extract important aspects of the graph. As mentioned above, users
may zoom in to investigate particular families in the graph tree and
zoom out to examine relationships between families. A subgraph,
highlighted in Figure 9 is used to visualize details of selected nodes.
When users interactively select nodes, the subgraph shows all neigh-
bors of the selected nodes organized into levels through concentric
circles. When extended to dynamic graphs, an animation slider allows
users to easily play the entire animation or explore particular frames
in as rich a manner as a static graph.

6 RESULTS

Using our visualization tool, we were able to quickly extract valu-
able information from the financial data we looked at. For example,
we were able to automatically organize securities by industry and dis-
cover price relationships between industries simply by noticing the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

02-MaR-2005

Fig. 10. Correlation graph for Fidelity fund family (2005). Subtrees for
FASIX and FGBLX are highlighted.

coordinate placements of industries and the edges between them. For
portfolio management, we can quickly determine which stocks and in-
dustries would best diversify our portfolio by looking at which areas
of the graph we have few assets in. We are able to view stocks that are
the most highly correlated to others and notice that these are the large-
cap and financial services stocks since they are more likely to follow
general market trends. We can immediately identify very highly cor-
related clusters of stocks using clique symbols.

We are even able to easily discover interesting changes in the graph
over time, a largely overlooked feature in current visualization tools.
For example, we produced a temporally-coherent animation of the
S&P 500 from January 1990 to June 2005 using every month as a
keyframe. We noticed dramatic movements in the graph from 1999 to
2002. This corresponded to the internet bubble, a very dynamic period
in the stock market. A sustained bull market followed by a recession
caused many changes in correlations. A large part of this movement
was due to the rise of financial firms to the top levels of the graph,
which was immediately evident in our animation. Financial services
companies, who are most affected by market changes, started to gain
correlation with many companies during this time, boosting them to
the top level. As seen in Figure 11, in December 1998, Merrill Lynch
(MER) and AIG (AIG) were the only financial nodes in the top level,
but by April 2002, General Electric (GE) was the only non-financial
top level node. Along with financial services, the most highly affected
industry during the bubble was obviously information technology. By
November 2001, IT nodes fell under the umbrella of Janus Capital
Group. Janus, which had amazing growth in 1999 due to its holdings
in tech companies like Amazon and Priceline, suffered a drastic melt
down in the March 2000 crash. Thus, the price correlation between
Janus and the IT nodes becomes evident.

We were also able to discover other interesting market events. For
example, the rise and fall of Lucent Technologies (LU) is one major
change seen through our animation. Lucent, a major player in the 1999
technology market, grew almost 1000% in the late 90s, however in

15-DEC-1998

Fig. 11. The rise of financials (light blue) is seen in Dec. 1998 and
Aug. 2002. Janus Capital forms the root of the IT (yellow) subtree.

early 2000, its stock dropped even more incredibly, greatly outpacing
the average drop of the crash. In the animation, Lucent was just a leaf
node in October 1997, but by November 1998, it was a top level node
and soon became the parent of the IT sector, as seen in Figure 12. By
June 2000, Lucent was a leaf node again. After the recession, another
central node emerged: Prudential (PRU). Since late 2002, Prudential
stocks saw steady growth, representative of the rest of the market. By
January 2003, it was part of the top level and remained the parent of
many nodes. Another interesting example is American International
Group (AIG), who was a central node in the graph since 1993. How-
ever, in early 2005, AIG was charged with using reinsurance strategies
to hide poor performance on the balance sheet. This cost the CEO his
job and caused the stock to tumble to a two-year low. Because of this
hammering, AIG, whose parent was the consistently growing Pruden-
tial, became more correlated with the stagnating GE. Figure 13 shows
the graph at the end of January 2005.

In Figure 10 we see our visualization tool applied to the funds of the
Fidelity mutual fund family. Among other interesting observations,
we notice that the conservative allocation fund, Fidelity Asset Man-
ager Income (FASIX), was highly correlated with the municipal and
government bonds because of its similar holdings. We also note that
Fidelity Global Balanced (FGBLX), which holds investments through-
out the world, is the parent, and thus representative of, funds for Asian,
European, and emerging market equities.

Although we have focused on financial applications, our visualiza-
tion tool is general enough to produce quick layouts for any applica-
tion requiring the analysis of complex and dynamic relationships. For
example, we produced a visualization of a protein-protein interaction
graph shown in Figure 14 (1846 nodes, 2203 edges) with a layout time
of 29 seconds. We also visualized a high energy physics publication
network shown in Figure 15 (4841 nodes, 24587 edges), in which our

KUMAR ET AL: INTERACTIVE VISUALIZATION OF COMPLEX TIME-VARYING GRAPHS

15-Mar-1999

Fig. 12. At the peak of the boom in March 1999, Lucent Technologies
(LU) is the parent of the IT sector.

layout algorithm finished in 31 seconds. By comparison, our S&P 500
animation converged to a final layout in a median time of 13 seconds
per keyframe. All running times were computed on a 1.86 GHz Pen-
tium M processor.

7 CONCLUSION AND FUTURE WORK

Although we believe our visualization tool to be very useful for most
data, the quality of the hierarchy created is still very data-dependent.
The hierarchy imposed on the graph may not be as meaningful for
graphs not matching a power law distribution of edges. Also, cases
where two nodes are equally qualified to be the parent of another node
can cause dramatic movements in an animation due to small changes in
weight. Although we tried to minimize spurious movement by taking
an offline approach to maintain temporal coherence and by incorpo-
rating several metrics in choosing parents, we realize that a standard
tree hierarchy may not be appropriate for some data. Stratifying or
building the hierarchy in a more flexible manner (perhaps using a tree
where nodes can have more than one parent) may be promising future
work. Additionally, since the current space complexity of our tool is
O(nz), we believe that we can improve on this to support very large
sparse graphs in the future. Finally, a different hierarchical visual-
ization technique may also improve the system. Although we tried
to limit regions in which sibling circles occlude each other, a quasi-
Voronoi cell approach with good temporal coherence could address
this issue.

Despite these limitations, our case studies on financial data show
that our system is still very useful in analyzing graphs and extract-
ing trends from complex data. We believe a major advantage of our
method is the ability to analyze dynamic graphs, an often-overlooked
aspect of graph layout research. Our method of structuring complex
graph data and our interactive approach to graph layout allows us to ef-
ficiently express key data trends while still allowing an endless amount
of information to be explored and analyzed.

REFERENCES

[1] R. Andersen, F. Chung, and L. Lu. Drawing power law graphs using a
local/global decomposition, 2004.

[2] V. Boginski, S. Butenko, and P. M. Pardalos. On structural properties
of the market graph. Innovations in Financial and Economic Networks,
pages 29-45, 2003.

[3] V.Boginski, S. Butenko, and P. M. Pardalos. Statistical analysis of finan-
cial networks. Computational Statistics and Data Analysis, 48(2):431—
443, 2005.

[4] D.S. Chan, K. S. Chua, C. Leckie, and A. Parhar. Visualisation of power-
law network topologies. In Proc. of the 11th IEEE Intl. Conf. on Net-
works, pages 69-74, 2003.

31-JAN-2005

Fig. 13. The first (top) and second levels of the S&P 500 at the end of
January 2005. After a significant decline, AIG becomes a child of the
stagnating General Electric.

[5] M. Dickerson, D. Eppstein, M. T. Goodrich, and J. Meng. Confluent
drawings: Visualizing non-planar diagrams in a planar way. In Proc.
11th Int’l Symp. on Graph Drawing, pages 1-12, 2002.

[6] D. P. Dobkin, A. Hausner, E. R. Gansner, and S. C. North. Uncluttering
force-directed graph layouts. In Proc. of the 15th Symp. on Computa-
tional Geometry, pages 425-426, 1999.

[7]1 Q. Du, V. Faber, and M. Gunzburger. Centroidal voronoi tessellations:
Applications and algorithms. SIAM Review, 41(4):637-676, 1999.

[8] P. Eades. A heuristic for graph drawing. Congressus Numerantium,
42:149-160, 1984.

[9] L. C. Freeman. Visualizing social networks. Journal of Social Structure,
1(1), 2000.

[10] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-
directed placement. Software: Practice and Experience, 21(11):1129—
1164, 1991.

[11] E. Gansner, Y. Koren, and S. North. Topological fisheye views for visu-
alizing large graphs. In Proc. of the IEEE Symp. on Information Visual-

Fig. 14. Biological graph with edges between interacting proteins.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Fig. 15. Graph of physics research papers with edges representing ci-
tations. Viewed all at once (top), the graph is inscrutable whereas our
filtering techniques (bottom) reveal identifiable structure.

ization, pages 175-182, 2004.

[12] E.R. Gansner and S. C. North. Improved force-directed layouts. In Proc.
6th Int’l Symp. on Graph Drawing, pages 364-373, 1998.

[13] C. Gorg, P. Birke, M. Pohl, and S. Diehl. Dynamic graph drawing of se-
quences of orthogonal and hierarchical graphs. In Proc. 12th Int’l Symp.
on Graph Drawing, pages 228-238, 2004.

[14] S. Hachul and M. Junger. Drawing large graphs with a potential-field-
based multilevel algorithm. In Proc. of the 12th Intl. Symp. on Graph
Drawing, pages 285-295, 2004.

[15] D. Harel and Y. Koren. A fast multi-scale method for drawing large
graphs. In Proc. 8th Int’l Symp. on Graph Drawing, pages 183-196,
2000.

[16] T. Kamada and S. Kawai. An algorithm for drawing general undirected
graphs. Information Processing Letters, 31(1):7-15, 1989.

[17] J. M. Kleinberg. Authoritative sources in a hyperlinked environment.
Journal of the ACM, 46(5):604—632, 1999.

[18] H. Markowitz. Portfolio selection. J. of Finance, 7(1):77-91, 1952.

[19] M. E.J. Newman. Fast algorithm for detecting community structure in
networks. Physical Review E, 69(1):066133, 2004.

[20] S. C. North. Incremental layout in dynadag. In Proc. of Graph Drawing
’95, volume 1027, pages 409-418, 1996.

[21] J-P Onnela, A. Chakraborti, K. Kaski, J. Kertesz, and A. Kanto. Dynam-
ics of market correlations: Taxonomy and portfolio analysis. Physical
Review E, 68:056110, 2003.

[22] K.J.Pulo. Recursive space decompositions in force-directed graph draw-
ing algorithms. In Proc. of Australian Symp. on Information Visualisa-
tion, pages 95-102, 2001.

[23] B. Schneiderman. The eyes have it: A task by data type taxonomy for
information visualization. In Proc. for IEEE Symp. on Visual Languages,
pages 336-343, 1996.

[24] F. van Ham and J. J. van Wijk. Interactive visualization of small world
graphs. In Proc. of the IEEE Symp. on Information Visualization, pages
199-206, 2004.

[25] A.Y. Wu, M. Garland, and J. Han. Mining scale-free networks using
geodesic clustering. In Proc. of the 10th Intl. Conf. on Knowledge Dis-
covery and Data Mining, pages 719-724, 2004.

