
Notes on Mesh Smoothing

Nicholas Bray

October 18, 2004

Motivation

There are a number of applications in which increasing the smoothness of a mesh
is desirable. A compelling example is noise removal. When meshes are con-
structed from acquired data, measurement error can result in a smooth surface
being approximated with a rough mesh. Smoothing the mesh can attenuate this
noise. Another application is surface subdivision. Taubin [1] cites a class of algo-
rithms that smooth the surface after subdividing it to improve the appearance. In
general, mesh processing algorithms may introduce undesirable artifacts that can
be attenuated with smoothing.

Laplacian Smoothing

A common method for smoothing meshes is Laplacian smoothing. This process
is also known as diffusion. The basic idea is that the vertices of a mesh are incre-
mentally moved in the direction of the Laplacian. The differential version of the
smoothing equation is:

∂X

∂t
= λL(X) (1)

where X is the vertices of the mesh, L is the Laplacian, andλ is a scalar
that controls the diffusion speed. Assuming the Laplacian operator is linear, the
smoothing equation can be rewritten as the following forward difference equation:

X(n + 1) = (I + λdtL)X(n) (2)

1

Diffusion smoothing has a couple of desirable properties. First, it doesn’t
modify the connectivity of a mesh. Each smoothing step modifies the position of
the vertices, but no vertices are added or removed, and the triangulation remains
unchanged. Second, the discrete Laplacian can be formulated so that smoothing
a given vertex only requires information about its immediate neighbors. The size
of this neighborhood tends to be small and does not increase as the size of the
mesh increases. As such, the complexity of Laplacian smoothing can be linear
in time and space. Taubin [1] cites a number of optimization-based smoothing
algorithms, and notes their higher-order complexities make them impractical to
use on large meshes.

Diffusion smoothing also has a few undesirable properties. Unless the ap-
proximation of the Laplacian is constructed carefully, triangles will slide across
the mesh. This sliding pushes the mesh towards a more regular triangulation. This
effect may in of itself be desirable, but surface properties, such as color and tex-
ture coordinates, may need to be reparameterized. Further, sliding tends to distort
the shape of the mesh. Shape distortion, for most applications, is extremely un-
desirable. Figure 1 and 2 demonstrate shape distortion resulting from Laplacian
smoothing. Finally, meshes subjected to Laplacian smoothing shrink. In the as-
ymptotic limit, applying Laplacian smoothing to a mesh will cause it to collapse
to its barycenter. Volume loss will not be this extreme for reasonable amounts of
smoothing, but it can still be quite noticeable.

Laplacian Approximations

There are a number of different approximations for the Laplacian operator, each
with their own advantages and disadvantages. In the continuous case, the Lapla-
cian is defined as:

∆f = ∇2f =
n∑

i=1

∂2f

∂x2
i

(3)

Desbrun et al. [3] describe three discrete approximations, each of which boil down
to a weighted sum of the one-ring neighbors of a vertex:

L(xi) =
∑

j∈N1(i)

wij(xj − xi) (4)

The only difference between the operators is how they calculate the weights.

2

Simple Laplacian

A simple approximation of the Laplacian uses equal weights:

wij =
1

m
(5)

where m is the number of neighbors ofxi. In effect, this scheme defines the
Laplacian as the vector from the vertex in question to the barycenter of its one-
ring neighbors. This is also known as the umbrella operator.

The biggest advantage of using the simple Laplacian operator is that it depends
only on the topology of the mesh, and not the position of the vertices. As such,
it is a linear operator, and matches the assumptions made in the formulation of
the smoothing equation. Further, it does not change during the smoothing process
and therefore never needs to be recalculated.

The biggest problem with the umbrella operator is that it results in significant
sliding and shape distortion when applied to meshes with irregular triangulations

Scale-dependent Laplacian

A slightly more complex approximation of the Laplacian uses weights propor-
tional to the inverse distance between the vertices. These weights are also known
as Fujiwara weights. This formulation of the Laplacian is also known as the scale-
dependent umbrella operator.

wij =
1

|eij|
(6)

Like the previous approximation, vertex sliding is still an issue, although it is
less pronounced. The primary benefit of this operator is that it better preserves the
distribution of triangle sizes.

On the downside, the operator is no longer linear. Further, the operator must be
recalculated as the vertices move. For reasonable amounts of smoothing, however,
edge lengths should not change too radically. As such, it is safe to approximate the
scale-dependent Laplacian operator as constant over short time intervals. Desbrun
et al. [3] claim good results without recalculating the operator. Scale dependence
puts an additional stability constraint on explicit methods, and can force small
time steps for large meshes with fine details.

3

Figure 1: Application of operators to a mesh with different sampling rates: (a)
original mesh, (b) equal weights, (c) Fujiwara weights, and (d) curvature normal.
Figure taken from [3].

Figure 2:Significant smoothing of a dragon: (a) original mesh, (b) equal weights,
(c) Fujiwara weights, and (d) curvature normal. Figure taken from [3].

4

Figure 3:A diagram of the angles used in equation 7. Figure taken from [3].

Curvature Normal

To solve the issue of sliding, Desbrun et al. [3] propose a weighting scheme that
eliminates the tangential component of the Laplacian:

wij = cot αj + cot βj (7)

whereαj andβj are the angles opposite the edge in the two triangles that share
that edgeeij, as shown in Figure 3.

According to Desbrun et al. [3], curvature flow provides the best smoothing
with respect to shape. Like the scale-dependent Laplacian, however, the curvature
operator is non-linear and changes as the vertices move. This weighting scheme
unfortunately breaks down if eitherαj orβj is obtuse, aswij can become negative.
A preprocessing pass can be added to split obtuse triangles and sidestep this issue.

Links to Signal Processing

Taubin [1] notes that Laplacian smoothing is equivalent to lowpass filtering. In
traditional signal processing, lowpass filtering is a simple way to remove noise if
the desired signal does not have significant high frequency content. As in tradi-
tional signal processing, it is possible to tune the frequency response of the filter
by constructing a polynomial sum of the Laplacian operator. Higher order polyno-
mials result in a sharper frequency rolloff, and this allows the filter to distinguish
between signal and noise with greater precision.

5

Taubin further points out that projecting a signal onto the basis formed by the
eigenvectors of the Laplacian operator is equivalent to the Fourier transform. This
opens the door for smoothing a mesh using spectral decomposition and resynthe-
sis. Unfortunately, the time complexity of this approach is usually worse than
linear. The complexity for finding all the eigenvalues of a matrix is O(n3), but
sparseness can be exploited to reduce the complexity to O(n). Even if an efficient
method is employed, however, numerical instability can become a problem when
adjacent eigenvalues are closely spaced.

Variations on Basic Smoothing

Beyond the choice of how to approximate the Laplacian operator, there a number
of variations on basic diffusion smoothing that can be useful.

Implicit Integration

Desburn et al. [3] observe that implicit integration can be faster than explicit for
smoothing applications. The sparseness of the Laplacian operator allows each
iteration to be reasonably efficient, and the stability gained from using an im-
plicit approach enables the smoothing to be done in fewer iterations. The implicit
smoothing equation is:

(I − λdtL)X(n + 1) = X(n) (8)

As mentioned previously, the quality of smoothing can be improved by using
a polynomial sum of Laplacian operator. Unfortunately, this has the side effect of
decreasing the sparseness of the smoothing operator. This is a particular problem
for implicit formulations, as the loss of sparcity pushes the computational com-
plexity towards that of solving an N x N system of equations. Desburn et al. [3]
claim thatL2 results in the best balance between quality and computational cost
when implicit methods are employed.

Taubin Smoothing

Taubin smoothing, also known as theλ|µ algorithm, relies on the use of two diffu-
sion steps, one inwards and one outwards, to approximately preserve the volume
of the mesh. As with previous smoothing algorithms,λ controls the amount of

6

inward diffusion and the new parameterµ plays the same role in the outward dif-
fusion step. In signal processing terms, Taubin smoothing employs a second-order
filter with a pass band gain slightly larger than one so as to prevent the shrinkage
of low frequency components. In geometric terms, Taubin smoothing diffuses
the mesh inwards and outwards to attenuate details while keeping the surface in
roughly the same position. Although this approach is not guaranteed to preserve
mesh volume, it does a good job if the parametersλ andµ are well chosen. On
the down side, Taubin smoothing requires more iterations to achieve a level of
smoothing comparable to other methods.

Volume Rescaling

Desbrun et al. [3] propose an alternate approach for preserving the volume of a
smoothed mesh. Calculating the volume of a mesh has a linear complexity, so
recording the volume of a mesh before and after a smoothing operation is fairly
inexpensive. Given these two values, it is possible to scale the smoothed mesh
to make its volume match that of the original. This approach requires less com-
putation than Taubin smoothing, and does not require the tuning of an additional
parameter. On the down side, volume rescaling does not produce as good of re-
sults as theλ|µ algorithm for significant amounts of smoothing.

Anisotropic Smoothing

A problem with smoothing approaches that have been discussed thus far is that
they remove sharp features as readily as they remove noise. This is not an algo-
rithmic issue; rather it is a problem with how smoothness has been defined. By
definition the curvature at an edge is discontinuous, so any attempt to reduce the
variation in curvature will adversely affect the edge. From a signal processing
perspective, edges contain high frequency components, so lowpass filtering will
round them. Hildebrandt et al. [6] propose an anisotropic smoothing scheme that
reduces diffusion across edges. To achieve this, they modify the curvature normal
operator by reducing the weight of terms that have a magnitude greater than a
threshold.

7

Other Smoothing Techniques

Not all approaches to smoothing fit within the framework of Laplacian smoothing.
Jones et al. [5] propose a statistical method to anisotropically smooth a mesh in
one pass. This approach predicts the location of a vertex based on its neighbors.
Robust statistics are used to deemphasize the contribution of vertices dissimilar
to the one being predicted. Fleishman et al. [4] propose a similar method based
on bilateral filtering that is iterative. Bilateral filtering was originally formulated
for image processing, and is a non-linear variation of Gaussian smoothing that
weights sample points based on their similarity to the one being processed.

Summary

When implementing diffusion smoothing, there are a number of choices that can
be made. Different Laplacian approximations can be chosen to balance computa-
tional cost with quality. Explicit integration can be used for the sake of simplicity,
or implicit integration can be used to improve performance. If volume preser-
vation is desired, Taubin smoothing or volume rescaling can be employed. All
of these choices have associated tradeoffs, so there is no best approach to mesh
smoothing. Ultimately, the needs of the application determine the best approach
to use.

References

[1] G. Taubin. A signal processing approach to fair surface design. InProceed-
ings of SIGGRAPH 1995.

[2] G. Taubin. Geometric signal processing on polygonal meshes. Eurographics
2000 State of the Art Report, August 2000.

[3] M. Desbrun, M. Meyer, P. Schrder, and A. Barr. Implicit fairing of arbitrary
meshes using diffusion and curvature flow. InProceedings of SIGGRAPH
1999, pp. 317324, 1999.

[4] S. Fleishman, I. Drori, and D. Cohen-Or. Bilateral mesh denoising. InPro-
ceedings of SIGGRAPH 2003, pp. 950953, 2003.

8

[5] T. R. Jones, F. Durand, and Mathieu Desbrun. Non-iterative, feature-
preserving mesh smoothing. InProceedings of SIGGRAPH 2003, pp.
943949, 2003.

[6] K. Hildebrandt and K. Polthier. Anisotropic filtering of non-linear surface
features. InProceedings of Eurographics 2004.

9

