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Abstract. A parameterization of a surface is a one-to-one mapping from a param-
eter domain to the surface. This paper studies the construction of piecewise linear
parameterizations of triangulations and of discrete parameterizations of sets of un-
organized points. Such parameterizations are useful tools for the approximation of
triangulations by smoother surfaces as well as for the construction of triangulations
from unorganized points. Parameterization can also be used as the starting point
for multiresolution analysis of triangulations, through remeshing by triangulations
with subdivision connectivity.

1 Introduction

A parametric surface is defined by a one-to-one mapping ¢ : 2 — R?, with
2 C R? the parameter domain, and we call ¢ a parameterization of the
surface. This paper deals with the construction of parameterizations both of
triangulated surfaces and of discrete sets of points in R3.

One of the main uses of parameterization is in the approximation of scat-
tered data. In its simplest form, we are given a set of distinct (scattered)
points (z;,v;), 1 < i < N, in some region 2 of R?, and an associated set
of values z;. The task is to find a function s : 2 — R, with some order of
smoothness, which approximates the data in the sense that

s(wi, yi) = 2.

Many representations for s have been proposed, such as piecewise polynomials
over a triangulation of the points (x;,y;), radial basis functions, and tensor-
product splines, and various methods such as interpolation and least square
approximation have been applied to find s; see [28]. If the data are sampled
from some (unknown) function f(z,y), i.e. f(x;,y;) = 2z;, then s will be an
approximation to f.

In computer graphics and reverse engineering, however, we frequently en-
counter a set of points @; = (x4, y;, 2;) sampled from a surface whose geometry
is complex in the sense that it cannot be represented simply as the graph of
a bivariate function f(z,y). In this case the function s will not be a suitable
approximation to the underlying surface. If, however, the underlying surface
is homeomorphic to a simply connected planar region then we can approxi-
mate it by a parametric surface. If we can first choose a suitable parameter
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domain 2 and suitable parameter points w; = (u;,v;) in {2, then a simple
solution is to use one of the usual scattered data methods to independently
construct three functions sq, s2,s3 : 2 — R such that

s1(u;) = x4, s2(u;) = Y, sg(u;) = z;.

Then letting
s(u,v) = (s1(u,v), s2(u,v), s3(u,v)), (1)
we have
s(u, vi) & (i, Y5, %)

Thus the problem can be reduced to that of finding suitable parameter points
u; from given data points x;. Analogous to the parameterization of surfaces,
we view the set of points u; as a (discrete) parameterization of the set of
points x;. Various methods of constructing such parameterizations have been
proposed and it has been found that the choice of parameterization usually
has a large bearing on the quality of any resulting surface approximation s.

The construction of such discrete parameterizations is made easier when
we have some neighbourhood information about the points x;. In fact, if the
points x; are organized in a triangulation, with the points x; the vertices,
then any continuous, piecewise linear parameterization of the triangulation
contains a discrete parameterization of the points ;. We will study the con-
struction of such piecewise linear parameterizations in the first few sections
of the paper. Later we will treat the situation in which the points x; are truly
‘unorganized’. In this case we no longer have the neighbourhood information
supplied by a triangulation, and must instead build up neighbourhoods by
looking locally for the k£ nearest points, or using some similar technique.

Parameterizations have several other applications; notably remeshing and
texture mapping. We will briefly describe the use of parameterization for
remeshing and how it can be used to set up a multiresolution analysis for
triangulations.

2 Parameterization of Simple Triangulations

We begin by studying parameterizations of what, in this paper, we will
call simple triangulations, namely triangulations which are homeomorphic
to (simply connected) planar triangulations. The more complex case of man-
ifold triangulations will be dealt with in a later section.

First we define a planar triangulation. By a triangle we understand the

convex hull 7' = [vy,v2, v3] of three non-collinear points vy, ve,vs € R¥ with
k=23.
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Definition 1. Let 7 = {T1,...,Tax} be a set of triangles in R?. We call T
a planar triangulation if

(i) T, NTj, i # j, is either empty, a common vertex or a common edge,
(ii) the edges in 7 which belong to only one triangle form a simple polygon.

Thus the union of the triangles,

M
7= UTm

i=1
is simply connected and its boundary is the polygon in (ii).

In Figure 1, the triangle sets (a) and (b) do not fulfill property (i) of
Definition 1 and (ii) is not true for (c). Only the triangle set (d) is a planar
triangulation.

(a) (b) () (d)

Fig. 1. Of these triangle sets only (d) is a planar triangulation.

Next we will define a simple triangulation as the image of a one-to-one
mapping from a planar triangulation to R® (or as an embedding of a planar
triangulation in R?). It will be useful to define S;(7), k = 1,2,3, to be the
linear space of all continuous functions s : 2 — R* which are linear over
each triangle in 7. Thus each of the k components of s belongs to S?(7),
where S (7) is the usual notation for the spline space over (27 of piecewise
polynomials of degree d and of smoothness C” (see [32]).

Definition 2. Let 7 = {T3,...,Ty} be a planar triangulation. For any
injective function ¢ € S3(7) we call the set of triangles

S=¢(T)={o(T1),...,0(Tm)}

a simple triangulation and we let

M

0s = ¢(21) = | o(T0).

=1

We call ¢ : 27 — (2s a parameterization of {2s.
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Thus (2s is a parametric surface with piecewise linear parameterization ¢.
The following observation shows that {27 and {2s are in fact homeomorphic.

Proposition 1. The mapping ¢ : 27 — {2s is a homeomorphism.

Proof. By definition ¢ is injective and thus a bijective mapping from {27 to
2s. Therefore ¢ has an inverse ¢ = ¢~ ! : 25 — 2. Due to the compactness
of 27 and (2s and the fact that ¢ is continuous, a well-known result from
real analysis (see [19, p. 94]) shows that 1 is also continuous and thus ¢ is a
homeomorphism. O

Figure 2 shows an example of a planar triangulation 7 and a correspond-
ing simple triangulation S in R3.

(a)

Fig. 2. Planar triangulation (a) and corresponding simple triangulation in R? (b).

Ezample 1. Let 27 be a planar triangulation and let f € S;(7). Then the
mapping ¢ € S3(7) defined by ¢(x,y) = (z,y, f(x,y)) for (z,y) € 27 is
clearly injective and so § = ¢(7) is a simple triangulation with parameteri-
zation ¢.

In this example, the surface {25 is simply the graph of the piecewise linear
bivariate function f. In the next example, it is no longer possible to represent
25 as the graph of a bivariate function (in general).

Example 2. Let {21 be a planar triangulation contained in the open rectangle
(0,1) x (0,27) and let ¢ € S3(T) be given by ¢(x,y) = (x,cosy,siny) for
(x,y) € 27. Then § = ¢(T) is a simple triangulation with parameteriza-
tion ¢.

Here, the vertices of 7 are mapped onto the cylinder of unit radius whose
axis is the z-axis.

Ezample 3. A further example of a simple triangulation is given in Figure 3.
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The situation we want to consider now is that we are given a simple trian-
gulation S only. Our task is to find a planar triangulation 7 and associated
parameterization ¢ € S3(7) such that ¢(7) = S. We solve this by construct-
ing a one-to-one piecewise linear mapping v : 2s — R? and setting ¢ = 1.
As for planar triangulations, we can use the linear space notation and we
define Sy (S) as the linear space of all continuous functions s : 25 — R*
which are linear over each triangle of S. We can then express the problem as
that of constructing an element ¢ of S5(S) which is injective.

Ezample 4. If s is the graph of the function f € S1(7), as in Example 1,
then the projection ¥ € S(S) given by ¢(z,y, z) = (z,y) is injective and its
inverse ¢ is as in Example 1.

Projection from R? into the (z,y) plane is a valid form of parameterization
whenever the triangulated surface (25 is the graph of a function of x and y.
However, such a projective parameterization can lead to very poor results
when used for surface fitting and it may well be better (especially when f
has steep gradients for example) to fit a parametric surface based on one of
the kinds of parameterization we will discuss later.

3 Parameterization by Linear Methods

We now describe a method for constructing an injective mapping ¢ € Sa(S).
Since such a mapping v is piecewise linear, it is completely determined by
the (parameter) points ¥ (v) € R? for vertices v in the vertex set V = V/(S)
of S.

Let V7 denote the interior vertices of S and Vz the boundary ones. Due
to Definition 1, the boundary vertices of S form a polygon dS in R® which
we call the boundary polygon of §. Two distinct vertices v and w in S are
neighbours if they are the end points of some edge in S. For each v € V| let

Ny ={w eV :|w,v] € E},

the set of neighbours of v, where E = E(S) is the set of edges in S.

The first step of the method is to choose any points 1 (v) € R?, for v € Vg,
such that the boundary polygon 0§ of & is mapped into a simple polygon
(0S) in the plane. In the second step, for v € V7, we choose a set of strictly
positive values \yq, for w € N, such that

> dow =1 (2)
wEN,

Then we let the points ¥ (v) in R?, for v € V7, be the unique solutions of the
linear system of equations

Y)= D Mewth(w), vEVL (3)

wEN,
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Since these equations force each point ¥ (v) to be a convex combination of its
neighbouring points ¢ (w), we call ¢ a convex combination mapping. Figure 3
shows an example of a simple triangulation (in R?®). Figure 4 shows a convex
combination mapping of § into a planar triangulation 7, whose boundary
was chosen to be a rectangle. Figure 4 also shows a tensor-product spline
approximation (in fact a least squares approximation, taken from [9]) to the
vertices of S based on their parameter points, the vertices of T .
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Fig. 4. Parameterization (a) and resulting tensor-product spline approximation

(b).

Let us take a closer look at the linear system (3). We must show that it
has a unique solution. To this end, note that it can be rewritten in the form

P) = D Awt(w) = > Aewtd(w),  vEVL  (4)

weN,NV wEeN,NVp

This can be written as the matrix equation
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where & = (¢(w)),, ¢y, is the column vector of unknowns in some arbitrary
ordering, b is the column vector whose elements are the right hand sides
of (4), and the matrix A = (dvw), ey, has dimension n x n, with n = |Vi|,
and elements

1, w=w,
Apw = _)\vwv w e N'm
0, otherwise.

The existence and uniqueness of the solution to (3) follows from the structure
of the matrix A, namely that its off-diagonal elements are either zero or
negative and each row of A is diagonally dominant. Moreover every row
corresponding to a vertex v € V; which has at least one neighbour in Vg is
strictly diagonally dominant and every interior vertex can be connected to the
boundary by a path of vertices. A standard result in linear algebra shows then
that A is non-singular (in fact A is a so-called M-matrix, and such matrices
frequently occur in numerical approximations to elliptic partial differential
equations; see [31]).

The interesting question is whether ¢ is one-to-one. It will not be one-to-
one in general but the following result from [10] gives a sufficient condition.
We say that an interior edge of S is a dividing edge of S if both its end points
are boundary vertices of S.

Theorem 1. Suppose ¢ € So(S) is a conver combination map which maps
the boundary S homeomorphically to the boundary 082 of a convexr planar
region {2. Then ¢ is one-to-one if and only if no dividing edge is mapped by
Y into 012.

4 Choosing the Weights

A simple choice of weights Ay, is to take them to be constant for each vertex
v, i.e. Apw = 1/d(v), w € N, where d(v) is the degree |N,| of v. Then
every interior vertex ¢ (v) of the solution to the linear system will be the
barycentre of its neighbours. We then say that ¢ = ¢! : 27 — () is
a uniform parameterization of {2s. However, numerical examples show that
this parameterization usually leads to poor spline surfaces (1) when used for
approximation. Look for example at Figures 5 and 6. Figure 5 shows a simple
triangulation S and Figure 6 shows the planar triangulation 7 of a uniform
parameterization of S together with a Clough-Tocher (C! piecewise cubic)
interpolant to S over the triangulation 7 (see [28,32]). Clearly the iso-curves
are badly behaved.

One reason for the bad behaviour of the surface approximation is that
the weights Ay are independent of the geometry of the vertices v of S. In
practice it is much better to choose weights for which the Euclidean distance

lo— 3= Avwol] (5)

wEN,
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Fig. 6. Uniform parameterization (a) and Clough-Tocher interpolant (b).

between v and Zwe N, Avw is as small as possible and in particular, when
v and its neighbours lie in a plane, we should have

v = Z )\vww- (6)

WE N,

This latter condition implies linear precision: if the whole triangulation S lies
in a plane and v|ss is an affine mapping then the whole convex combination
mapping ¢ is an affine mapping.

We will now describe a certain choice of (positive) weights Ay in (3)
which has these properties (see [7]). For each v € V; we compute, in two
steps, all the \yq for w € N, according to v and its neighbours in S. Let
us label these neighbours vy, ...,v4, where d = d(v), in some anticlockwise
order around v relative to S.

Let C,, be the set of all triangles in S containing v. We call the union of
these triangles, (2c,, the cell of v. The first step is to use a local injective
mapping ¥, € S2(Cy) in order to “flatten out” the cell ¢, into the plane,
yielding local (temporary) parameter points p = ¢, (v) and p; = 1, (v;); see
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Figure 7. We use an approximation of the geodesic polar map, adapted to
triangulations. We let p be arbitrary and choose the neighbours p; such that
foreach yj=1,...,d,

llp; — pll = llv; — v

and for each triangle [v,v;,v;] in Cy,

ang(p]mp?pj) = pang(”kv”?”j)?

where p is a constant. The scaling factor p is chosen to ensure that the interior
angles in the mapped cell 1, ({2c,) sum to 27. Note here that in the event
that the cell {2¢, is planar, we have p = 1 and the local mapping %, is an
affine mapping.

o= R

Fig. 7. Calculating the shape-preserving weights.

The second step is to express p as a convex combination of the neigh-
bouring mapped points p,,...,p, in order to obtain linear precision. For
each k =1,...,d, we locate an edge [p,., p,] in 1y (Cy) for which

p € [p}gvp'mps]v

and with 77, 7, 7% the barycentric coordinates of p in this latter triangle,

T
we have
_ +k k k
P=T;Px +Trpr+7—sps'

Letting 75 = 0 for all j # k,r, s we then have

d
p= erpj.
j=1

Finally, we take the weights to be averages of the local weights Tf over all
k=1,...,d,

d
1 .
)\vvj = E E Tj]"v (7)



296 Michael Floater and Kai Hormann

and we have

d
b= Z)\vvjpjv and Z)\vvj =1,
Jj=1

and Ayy, > 0forj=1,...,d.

Using the fact that each polar map is an affine map [7] when the associated
cell §2¢, is planar, equation (6) follows. The inverse ¢ = =1 : Q1 — (2 is
called a shape-preserving parameterization of (2s.

Figure 8 shows the result of interpolating S of Figure 5 with a Clough-
Tocher interpolant over the planar triangulation 7 of a shape-preserving
parameterization of §. The surface approximation is clearly better than that
of Figure 6, using uniform parameterization.
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Fig. 8. Shape-preserving parameterization (a) and Clough-Tocher interpolant (b).

The effect of choosing different boundary polygons ¥ (9S) is shown in Fig-
ure 10. In (a) the parameter points of the boundary vertices were distributed
by chord length on a rectangle and in (b) on a circle.

5 Parameterization by Weighted Least Squares

A special case of convex combination parameterizations arises from minimiz-
ing so-called spring energy. First, choose as before a convex polygon ¢ (Vp).
Secondly, for each interior edge [v, w] in S choose some value fiyw = fhww > 0.
Then let the points ¢ (v), v € V;, minimize the function

F= 3 jowll@) - @) (8)
[v,w]eE(S)
The normal equations for (8) are

EwENv P (W)
E’LUENv How

"/)(v) = R veV
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Fig. 10. Shape-preserving parameterizations of the triangulation in Figure 9.

and so minimizing F' is equivalent to solving (3) where

)\vw: How ) UEVD ’U)ENv.

2oweN, How

Notice that in general Ay 7 Awe €ven though fiyw = pwe. We call ¢ =
Yt 7 — s a least squares parameterization of (2s. As an example
one might choose piy = 1/||v — w||, but this method will not have linear
precision. Currently it is not known whether it is possible to find coefficients
Ity Which are at the same time positive and yield linear precision. A choice
of coefficients which does have linear precision is that of the so-called discrete
harmonic map 1, first proposed in [25] in the context of differential geometry
and later in [5] from the point of view of computer graphics. It is based on the
fact that harmonic maps minimize the Dirichlet energy, which for a function

f: 2 = R* is defined as

Bo(f) =5 [ 1911
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For our piecewise linear functions ¢ we find Ep (%) to be of the form (8) with

1
fow = 5 (cot x4 cot ),

where a and 3 are the angles opposite to [v,w] in the triangles adjacent
to this edge. Unfortunately, these weights will rarely all be positive and so
Theorem 1 is no longer applicable. In fact, as observed in [10],

sin(a + )

cota+ cot f = — s
sin asin 8

which means that i, > 0 if and only if o + 3 < 7. It follows [10] that the
condition that p,, > 0 for every interior edge [v,w] of S is precisely the
condition that S is a Delaunay triangulation (see Subsection 6.1 of [17]) in
the case that S is planar. Through a simple counterexample, it was shown in
[8] that when some weights 1., are negative, the discrete harmonic mapping
1) may not be one-to-one.

6 Parameterization by Non-Linear Methods

Fig. 11. Simple triangulation.

The main advantage of convex combination parameterizations is (i) that
they only require the solution of a linear system, and (ii) that they guarantee
a one-to-one mapping in the case that the boundary of the parameter domain
is taken to be convex.

However, for some triangulations we may want to parameterize S over a
domain with a non-convex boundary ¥ (9S), typically one that reflects the
shape of the boundary of the triangulation 9S. If we choose a circle or a
rectangle as boundary polygon for the triangulation in Figure 11 we obtain
a parameterization with quite a few distorted triangles near the boundary
(Figure 12 (a) and (b)), while projecting dS into the plane that fits the
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Fig. 12. Shape-preserving parameterizations of the triangulation in Figure 11.

boundary vertices best in a least square sense gives a much better result, see
Figure 12 (c).

We will now describe an alternative to convex combination maps which
simultaneously generates both a parameterization and the shape of the pa-
rameter domain. Although, in contrast to Theorem 1, the injectivity of ¢ in
this method can no longer be guaranteed, ¢/ usually turns out to be injective
in practice. However, since the method is non-linear, it is not surprisingly
slower than the method of convex combination maps. Moreover, it requires
an initial one-to-one mapping ¢ (such as a convex combination map) as
the start point of an iteration towards the solution. We therefore view this
method as a useful enhancement to a convex combination map through iter-
ative improvement when it is essential to have a boundary which is far from
convex.

The method is based on the observation that any mapping ¢ € S3(S) will
normally deform the shape of the triangles of S and aims at minimizing these
deformations. Consider e.g. the configuration of the cell {2¢, in Figure 7 which
can only be parameterized without distorting the triangles if the interior
angles sum to 27, e.g. if {2¢, is contained in a plane. This reflects a well-
known fact from differential geometry [3] that only developable surfaces (e.g.
planar, cylindrical and conical surfaces) can be parameterized without any
distortion. Such surfaces are isometric to the plane.

Definition 3. Let 2 C R? and f : 2 — R® be a differentiable and injec-
tive mapping and thus a parameterization of the surface f(£2) C R3. The
symmetric 2 X 2 matrix

I; =Vl -Vf
is called the first fundamental formof f. The parameterization f is called
isometric if

I; =1d.

A surface S C R? is called isometric to {2 if there exists an isometric
parameterization f of S with f(£2) = S.
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Ezample 5. For the mapping f : R?2 — R® with

" 4ud +1
f( )z 3u® + 3v

v—2
we have )
12u® 0
225ut 27u?
_ 2 _
Vf= 915 ii) and If_<27u2 10 ),

and thus f is not isometric. Still the surface S = f(R?) is isometric to R
which can be seen by applying the two reparameterizations 7, mo : R2 — R?

with
() =m0 ) (0) e = (0)= (V)
and verifying that the alternative parameterization
g=fomom
of S = f(R?) = g(R?) is isometric.

Ezample 6. The vertical cylinder C' = {(z,y,2) € R : 22 + y%? = 1} can be
parameterized over 2 = {(u,v) € R? : 0 < u < 27} by f: 2 — C with

u cos u —sinu 0

f< ): sinu = Vf=| cosu O and Iy =1Id,
v 0 1

and therefore C is isometric to 2.

The first fundamental form I expresses how a surface inherits the metric
from the parameter domain by f. The further Iy deviates from the identity
matrix, the more the metric quantities (length, angle, and area) are distorted.
Surfaces that are parameterized isometrically will therefore behave (locally)
like planes which is very desirable in many applications. If we use f and g
of Example 5 to paste texture information onto the surface S (Figure 13),
we can see how f distorts the image while the isometric parameterization g
perfectly preserves the planar metric.

Let us now return to the problem of finding for a given simple triangula-
tion S an injective mapping ¥ € S2(S) such that the distortion between the
triangles T' € S and their images 1(T") is small. Since 1 is piecewise linear
over (2s, we can write the restriction of ¢ to each T' € § as an affine mapping

Y(e)=Ax+p, xeT

with p € R? and A € R?*3. Note that by introducing a local orthonormal
coordinate system over 7" with the third axis perpendicular to 7', we can
assume that T lies in the zy-plane, in which case A € R?*2 and

Yl = flr,
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(b) (c)
Fig. 13. Mapping a texture map (a) to a surface using a non-isometric (b) and an
isometric parameterization (c).

for some affine function f: R?> — R?, i.e.,
f(x) = Az + p, x € R?. (9)

The question now is how to measure the shape deformation of ¢|r. We do
this by measuring the shape deformation of f in terms of the vector p and
the matrix A which define it. Let II; denote the linear space of all linear
functions f : R? — R%. We will say that a functional E : IT} — R is invariant
with respect to a linear function 7 € II; if E(wo f) = E(f) for all f € II;.
We call any functional E : II; — R a deformation functional if E is

e invariant w.r.t. translations, (x1)
e invariant w.r.t. orthogonal transformations, (x2)
e invariant w.r.t. uniform scalings, (x3)

since these are the linear operations that do not modify the shape of a triangle
(cf. Figure 14). They are also commonly known as similarity transformations.
Note that the Green-Lagrange deformation tensor ||I; — Id||* which Maillot
et al. [24] suggested in order to minimize distortion is not a deformation
functional.

(a) (b) (c)

Fig. 14. Translations (a), orthogonal transformations (b) and uniform scalings (c)
do not modify the shape of a triangle.
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Theorem 2. Let E : II; — R be a deformation functional and let f € II;
be as in (9). Then E(f) only depends on the ratio p = o1 /02 of the singular
values o1 > 02 > 0 of A. Any deformation functional can thus be expressed
as a function E:{peR:p>1} - R.

Proof. Because of (1), E(f) does not depend on the constant part p of f. If
we then consider the singular value decomposition [14] of A which guarantees
the existence of orthogonal matrices U and V such that

UTAV:2:<“1 0),

00'2

where o1 > 09 > 0 are the singular values of A, it is clear that any E fulfilling
(x1) and (*2) depends on oy and o2 only. Due to (¥3), E depends only on
the ratio o1 /0y. O

Since the ratio p = o1 /03 is minimal (p = 1) for all similarity transfor-
mations and maximal (p = co) for singular mappings (o2 = 0) that collapse
triangles to lines, we are specifically interested in deformation functionals
which are increasing as a function of p. This motivates

Definition 4. A proper deformation functional is a deformation func-
tional E which is monotonically increasing as a function of p.

We can use any proper deformation functional F to find a mapping ¥* in
S5(S) which minimizes

F() =Y E@|r). (10)

TeS

Since F(wov) = F(¢) for any similarity transformation m, we need to restrict
the minimization in order to ensure uniqueness of the minimum, at least
locally. This can be achieved in practice by iterating towards a minimum
from an initial starting point .

We will now look for a choice of local deformation functional E for which
the global functional F' is relatively simple to minimize. The concept of con-
dition numbers of matrices [14] provides an adequate tool. The condition
number x(X) = || X||||X || measures the distance of a matrix X to the set
of singular matrices w.r.t. a certain matrix norm || - || [14].

Corollary 1. The condition numbers ke and kp of A and of the first fun-
damental form Iy = AT A are proper shape deformation functionals.

Proof. From linear algebra [14] we know that the 2-norm and the Frobenius
norm of a 2 x 2 matrix are

[Allz =01 and [|A][F = 0f + 03
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and that the singular values of I are 0% and o3. Therefore

_ ag
Eu(f) = ra(4) = Al A = 2,
- : o? + o2
Ex(f) = ip(4) = JAIFIA7 | = Jo? + 03y /()2 +(2) = L2
T o}
E3(f) = ka(Iy) = ko(A" A) = =,
2
T ot + o5
Ey(f) =kr(Iy) =rp(A"A) = —5—=—,
0'10'2

or, if seen as functions of p = o1 /02,

Ei(p) = p, Ez(p)=p+%7 Es(p) = p?, E4(P)=<p+%> —-2. 0O

In order to make the minimization of (10) as simple as possible, we would
further like to choose a deformation functional E that is a simple function
of the unknown parameter points ¥ (v), v € T. We cannot expect to find a
deformation functional which is a quadratic polynomial in the coordinates of
of the three points ¥ (v1), ¥(v2), ¥(vs), as is the case for the discretization
of the harmonic map of Section 5. However, it can be shown ([16]) that E»
is a rational quadratic polynomial in these coordinates.

Y (v2)
Y .
T
(oh) fa)
U1 U3 Y(v1)

lo
Y(vs3)

Fig. 15. Two-dimensional linear mapping .

Proposition 2. Given the notations of Figure 15, the proper deformation
functional Es can be written as

cot aq [|01]]? + cot az||l2]]? + cot az]|ls]|?
EQ X €3

with €1 = Y(v3) —P(v2), la = P(v3) —P(v1), and l3 = P(v2) — P (v1).

Ex(¥lr) =
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With this choice of deformation functional the inverse ¢ = ¢~! : 2+ — 2s
was called a most isometric parameterization [16]. Figure 16 shows the most
isometric parameterization of the triangulation in Figure 9.

NN SIS SEE NG ="V
SRS =
IR I Y
AN N TR ==
< NN
U2 e ERs qid
TSSOV RS e ‘
A DN LA
RN >
/Aa'»:%‘&ﬂm‘vtw‘z =0,

il ?

‘b

=5 \VA\ iri
N \ klﬂﬂ;‘;‘u
s

\
Fig. 16. Most isometric parameterization of the triangulation in Figure 9.

Finally, we remark that another characterization of a deformation func-
tional E as defined above is simply that it should depend only on the angles
61, 02, 03 of the image ¢ (T') of the triangle T', for these angles are unchanged
under translations and uniform and orthogonal scalings of ¥(T). This im-
plies that any of the deformation functionals derived above can be expressed
purely as functions of these three angles. To see this in the case of E5, we can
use the sine rule ||¢;]]/]|¢;]| = sina;/ sina; to eliminate the [;, and we get

cot oy sin? 0y + cot s sin? By + cot ag sin® O3
sin 0 sin 05 sin 03

Ex(lr) =

)

which can be simplified to

3
Ey(¥|r) = Z cot a; cot 0,

ij=1
i#i

which clearly depends only on the angles 8; of ¥(T') (in addition to the angles

a; of T).

Sheffer and de Sturler [30] have also exploited the fact that linear maps
from one triangle to another are uniquely determined by the angles of their
triangles if we ignore translations and uniform and orthogonal scalings. They
therefore propose finding a mapping ¢ in S2(S) which minimizes F'(¢) in
(10) where

3

E@lr) =Y (0 — i)’
i=1
Though this minimization problem is linear in the unknowns a;, it becomes
non-linear as a number of constraints (some of which are non-linear) have to
be taken into account to guarantee the validity of the solution.
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Other non-linear parameterization methods have been developed espe-
cially for the application of texture mapping in computer graphics. Bennis,
Vézien, and Iglésias [1] proposed a method based on differential geometry.
They map isoparametric curves of the surface onto curves in the parameter
domain so that the geodesic curvature at each point is preserved. The param-
eterization is then extended to both sides of that initial curve until some dis-
tortion threshold is reached. Lévy and Mallet [22] presented a functional that
attempts to preserve perpendicularity and constant spacing of the isopara-
metric curves traced on the surface. Zigelman, Kimmel, and Kiryati [33] use
the method of multidimensional scaling to find parameter points such that
the distances among them best approximate the geodesic distances between
the corresponding data points in a least square sense. Sander et al. [27] mini-
mize a non-linear ‘stretch’ metric when making parameterizations for texture
mapping. The problem of constrained parameterization where a number of
(interior) parameter points are fixed in advance, has been addressed in [6]
and [21].

7 Remeshing, Subdivision Connectivity, and
Multiresolution

Before looking at further aspects of parameterization, we will next look at how
parameterization can be applied to multiresolution analysis of spatial trian-
gulations. Many of the following ideas are taken from the work of Lounsbery,
DeRose, and Warren [23], one of the first papers to deal with this topic.

We begin by explaining the idea of remeshing. Remeshing is simply the
process of approximating a given triangulation by a new triangulation with
certain desirable properties. Let us see how we might remesh a given sim-
ple triangulation S. We begin by finding a parameterization for S, i.e., we
construct a one-to-one mapping ¥ € S3(S) (such as a convex combination
mapping) so that ¢(S) is the planar triangulation 7. We then retriangulate
the domain (27 by a new triangulation 7' in such a way that 27 = 27 (see
Figure 17 (a) where T is the triangulation with normal and 7' the triangu-
lation with dotted lines). Now we define a mapping ¢ € S3(7") by setting

$(v) =~ (v) (11)

for all vertices v in 7”. Then the triangulation S’ = ¢(T") will be a piecewise
linear approximation to the original triangulation S: the vertices of S’ are
sampled from 2s, and we have ¢ ~ ¢! (see Figure 17 (b)).

One desirable property we might demand of 7" is subdivision connectivity
as it is the start point for a multiresolution analysis (MRA, see [26,2]), ap-
plications of which are data compression and multiresolution editing, among
others. To understand subdivision connectivity, let 7° be a planar triangula-
tion, and consider its dyadic refinement 7!. By dyadic refinement we mean
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(a)
Fig. 17. Retriangulation of a planar (a) and a simple triangulation (b).
v3 v3
—_— w2 w1
v1 V2 U1 v2
w3

Fig. 18. Dyadic refinement.

that we divide each triangle T' = [vq,v9,v3] in 7O into the four congruent
subtriangles,

[U17w27w3]7 [’LUl,’UQ,’LUg], [w17w27v3]7 [w17w27w3]7
where
w _ U243 w _u3tu w U1+
1 = 2 ) 2 = 2 ) 3 — 2 )

are the midpoints of the edges of 7'. This refinement is also referred to as the
one-to-four split, and the set of all such subtriangles forms a triangulation
T!, see Figure 18 for an example.

Note that the triangles of 7° and 7' cover the same domain, i.e., 270 =
271. Similarly, we can refine 7' to form 72, and so on. We let V7 be the
set of vertices in 77, 5 =0,1,2,..., and E7 the set of edges. Thus the V7 are
nested,

Volcvtcvic:.-.

We also have 245 = 270 for all j =0,1,....

Definition 5. We will say that the triangulation 77 above has subdivision
connectivity of order j. Similarly, we will say that any simple triangulation
S = ¢(T7), induced by a one-to-one mapping ¢ € S3(77) has subdivision
connectivity of order j.

Thus in order to remesh (approximate) a given simple triangulation S
with a triangulation S’ with subdivision connectivity of order j, we apply the
remeshing procedure given by (11) and take 7" to be a triangulation 77 with
subdivision connectivity of order j. In practice we would first retriangulate
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27 by a triangulation 7° with relatively few triangles and then let 77 be its
j-fold dyadic refinement.

To briefly see how an MRA works in this setting, let S = S3(77) for
7 > 0. These linear spaces are clearly nested,

SOcstcs?c..-,

and this allows us to decompose the triangulation S/ = ¢(77) by simply
decomposing the piecewise linear mapping ¢ € S3(77) which defines it.

For each j = 1,2,..., we choose W7~! to be some subspace of S’ with
the property that

STt Wit =97,

where @ denotes in general a direct sum. We call W7~ a wavelet space of
Si=1in §7, and we can decompose any space S’ into its coarsest subspace
S0 and a sequence of wavelet spaces,

ST=8"tawit
=S eW/ PaWwiT!

=S"eW’s.--aWit (12)

Within this framework, we decompose a given f € S3(77) into levels of
detail. Equation (12) implies that there exist unique functions f/~! € S9!
and ¢! € W71 such that

P=p g

and we regard f7~! as an approximation to f7 at a lower resolution or level of
detail. The function ¢g?~! is the error introduced when replacing the original
function f7 by its approximation f/~!. We can continue this decomposition
until j = 0. Then we will have f© € S° and g* € W, i =0,1,...,5 — 1 such
that

Pt +g + et g

and f° will be the coarsest possible approximation to f7. Multiresolution
editing can now be carried out by altering one or more of the functions g*.
Data compression algorithms can be designed by introducing bases for the
spaces S¥ and W* and throwing away small wavelet coefficients. Various
approaches to suitable wavelet bases have been proposed, such as those of
[23,29,12] and in the references therein.

A numerical example of remeshing and wavelet decomposition applied (in
an analogous way) to a manifold triangulation will be given in Section 9.
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8 Parameterization of Unorganized Points

So far we have assumed that the given data points @; are organized in a tri-
angulation, so that neighbourhood information is given. We will suppose now
that no such triangulation is given and we wish to find suitable parameter
points u; without the need for given neighbourhood information. For simplic-
ity we will only treat the case that the points a; are sampled from a simple
surface, i.e. a surface which can be parameterized over a simply-connected
domain in R?. Thus we want to construct a discrete one-to-one mapping
Yy from the vector Xy = {x1,...,zy} of points in R?, to another vector
Un = {uy,...,uy} of points in R?. Then the inverse ¢y = 1/);,1 :Unv = XN
will be a discrete parameterization of the point set Xy. Since the discrete
mapping ¥y is independent of any given topological structure amongst the
x;, we call the construction of ¢y meshless parameterization.

However, in order to guide the choice of )y we have in mind that if
the points x; were the vertices of a triangulation S then ¢y should be
the restriction to the vertices of S of some one-to-one piecewise linear map
Y € S2(S). This motivates taking ¢)x to be a convex combination map, just
as for triangulated data. The only change is that we now have to construct
neighbourhoods from data points which are near to each given data point ;.

Note that in addition to the application of meshless parameterization to
scattered data approximation as in (1), it can also be used to triangulate
the data set @x; with a simple triangulation. One can simply triangulate the
parameter points u; with a triangulation 7 say, which could for example be
a Delaunay triangulation (see Subsection 6.1 of [17]), and this immediately
gives a corresponding triangulation S of the points x;. In other words, we take
S to be the set of all triangles [x;, x;, 2] for which [u;, uj, ui] is a triangle
in 7. Thus meshless parameterization can be used for surface reconstruction.

Fig. 19. 12 nearest neighbours.
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The method, described in [13], begins by first dividing the set Xy into two
disjoint subsets: X7, the set of interior points, and X g, the set of boundary
points. Moreover the boundary points must be ordered. A method was out-
lined in [13] for first identifying boundary points and subsequently ordering
them using a univariate analogue of meshless parameterization. After that the
method is identical to the convex combination mapping method of Section 3,
the only difference being that we now have to find suitable neighbourhoods
N, for the points x; € X;. Several choices of such neighbourhoods were
proposed in [13] but a simple and effective choice is to take the ‘d nearest
neighbours’, in other words, we let N, be the set of the d points x; closest
to x;, illustrated in Figure 19. Going on several numerical tests, it appears
that setting d = 10 or d = 20 is adequate for all but the most extreme data
sets. As regards the choice of weights A;;, the naive choice of uniform weights
Aij = 1/d;, where d; = |N;|, can lead to the result that two data points x;
and x; end up being mapped to the same points: u; = u;, as shown in [13].
A better choice which has been found to perform very well in practice is to
use the weights

1 1
)\mi,:cj :7/ M
||lzj — il 2, ||y, — |

TrENg;

which depend on the distances between x; and its neighbours. Notice that
the neighbourhoods N, induce a directed graph G on the points x;, where
the points x; are the nodes and the pair (z;, ;) is a directed edge whenever
xj € Ng,. This graph will rarely be a planar graph (as is a triangulation) and
will usually have many more edges. Even so this method of parameterization
has been shown to work extremely well on many data sets. Notice also that
the graph G determines the solvability of the linear system (3). Indeed there
is a unique solution if for every point @; € X7, there is at least one path of
points x; in G' connecting x; to a boundary node in Xp.

Figure 20 shows an example of unorganized points (in R*) and a convex
combination mapping of these points to a rectangular parameter domain.
Here, the natural boundary of the data points is quite evident from the figure.
In practice, finding a suitable boundary can be quite delicate: a method was
outlined in [13]. Figure 21 shows the Delaunay triangulation of the parameter
points and this leads to a reasonable triangulation of the original data points.
Figure 22 illustrates the method on a more realistic example, a foot data set,
taken from [13]. On the left is the meshless parameterization, after Delaunay
triangulation, and the lifted triangulation is shown on the right.

By combining the parameterization of unorganized points with that of
triangulations, we end up with a fast, linear method for approximating un-
organized points by spline surfaces: we can go from Figure 20 (a) to Fig-
ure 21 (b), which is the same as the triangulation in Figure 3, and from there
find Figure 4 (b). Further numerical examples of meshless parameterization
can be found in [13,9].
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Fig. 22. Meshless parameterization (a) and resulting triangulation (b).
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9 Parameterization of Manifold Triangulations

In previous sections we have considered the parameterization of simple tri-
angulations, but what is to be done if the triangulation is more complicated,
for example closed and homeomorphic to a sphere or torus? This last section
shows how convex combination maps can be used piecewise to parameterize
triangulations of arbitrary topology. Though the basic ideas can be extended
to triangulations with boundaries, we will restrict the discussion to manifolds
(i.e. closed surfaces).

Definition 6. Let 7 = {T4,...,Ty} be a set of triangles in R®. We call T

amanifold triangulation if

(i) T; N1Tj is either empty, a common vertex or a common edge, ¢ # j, and

(ii) the union of the triangles 27 = Ui\il T; is an orientable 2-manifold.

A manifold triangulation 7 can no longer be parameterized over a planar
parameter domain as in Section 2 and we rather need a spatial domain that
is topologically equivalent to £27.

One way of generating a suitable spatial parameter domain is by mesh
decimation or mesh simplification (see [15]). The major class of these algo-
rithms modifies a given triangulation by iteratively applying a topological
operator such as vertex removal or half-edge collapse that decreases the num-
ber of triangles by two in each step without changing the topology of the
triangulation’s surface. These algorithms differ mainly by the strategy that
is chosen to decide in which order the simplification steps are to be carried
out. They all result in a triangulation 7° that approximates the shape of the
initial triangulation 7 in some way, i.e. {270 & 2. An example is shown in
Figure 23 where a triangulation with 768 triangles (a) was simplified to one
with 100 triangles (b).

Another approach for creating 7° is based on growing Voronoi tiles around
a previously chosen set of site faces and constructing the dual Delaunay
triangulation, as introduced in [5].

A parameterization of the given manifold triangulation 7 over the spatial
domain 7P is a homeomorphism ¢ : 270 — 27.

Lee et al. [20] find such a parameterization by simultaneously creat-
ing a hierarchy 7 = T°,...,T" of triangulations, and parameterizations
¢': TP = T 1. In each decimation step they remove one vertex of 7°~! and
the triangles incident to this vertex and retriangulate the hole. Therefore,
T=1 and T differ only locally and ¢ is not hard to find. Composition of the
individual ¢’ finally yields a parameterization ¢ : 7% — T, ¢ = ¢* 0---0 ",
which they further smooth in order to obtain better remeshing results.

An alternative way of solving the manifold parameterization problem is
described in [11]. The method partitions the manifold triangulation 7 into
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(b)

Fig. 23. A manifold triangulation (a), its simplified triangulation (b), and its sur-
face triangulation (c).

My = |T?] disjoint subsets Sy, Sa, .. ., Sy, such that each S; is a simple trian-
gulation and corresponds to the triangle T; € T° in the spatial parameter do-
main. We call each S; a surface triangle and the collection S = {S;}i=1,...,m,
a surface triangulation. Figure 23 (c) shows an example.

We can then use any of the simple parameterization methods to construct
a parameterization ¢; of S; over T; and combine them in the end to define
the parameterization ¢ by letting

o1, = di, i=1,...,M°

In order to assure ¢ to be a homeomorphism we need the individual param-
eterizations ¢; to be continuous across the edges of 7. This is achieved by
parameterizing the edges first and then fixing these parameter values before
parameterizing the interior of each surface triangle.

In practice the whole procedure is performed in three steps. Firstly, ¢ is
defined for the vertices V° of T°. If T was constructed by mesh simplification
we always have V° C V and simply set ¢(v) = v, v € VO. If the vertex
correspondences are chosen by some other method, e.g. interactively, ¢(v)
does not necessarily need to be a vertex of 7. In this case we refine 7 by
an edge split or a one-to-three triangle split to a triangle mesh 7' such that
¢(v) is a vertex of T’ (cf. Figure 24). Note that this does not change the
geometry of the given triangulation, i.e. 27 = {27, but only its connectivity.
We therefore assume without loss of generality ¢(V°) C V.

Secondly, ¢ is extended to the edges E° of 7°. This is done by finding for
each edge e = [v,w] € EP the shortest path € on 27 between ¢(v) and ¢(w),
e.g. with the algorithm in [4,18]. We refer to this shortest path as a surface
edge. Since the shortest path across a triangle is a straight line, shortest paths
on triangulations are polygonal curves whose vertices lie on the edges of the
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Fig. 25. Refining T in order to embed a surface edge é.

triangulation. Thus we may write € as a set of line segments
e = [ur,u2] U uz, us] U+ Ulur—1,u,l,

where u; = ¢(v), u, = ¢(w) and the u; are located on the edges of T.
Since we can always refine 7 to a triangle mesh 7' as shown in Figure 25,
we assume without loss of generality w; € V and [u;,u;41] € E. We can
now parameterize € over e by a standard line parameterization technique,
e.g. chord length parameterization.

Thirdly, we further extend ¢ to the triangles of 7°. For each triangle
T; = [u,v,w] € T° we let the surface triangle S; be that region of 7 which
is bounded by the three surface edges ¢([u,v]), ¢([v,w]), ¢([w,u]). As we
have already defined the parameter points of the boundary vertices of S; in
the previous step we can now apply e.g. shape preserving parameterization
to determine the parameter points of the interior vertices. In this way we
obtain for each i = 1,..., M° the individual parameterization ¢; : T; — 2s,,
which are then combined to give ¢ : 270 — (27

Figure 26 finally shows an example of a manifold parameterization and
its application to remeshing and wavelet compression. The manifold trian-
gulation 7 in (a) has first been decimated to the coarse triangulation 7°
in (d). Then the parameterization ¢ : 270 — T has been constructed as
explained above (b) and used to define a remesh 7" (c) of 7 by mapping the
vertices of the dyadic refinement 73 of 7° (e) as in (11). Finally, the wavelets
of [12] were used to decompose and compress 7' to the triangulation in (f)
which can be represented by the 59 vertices of a coarse triangulation and
59 wavelet coefficients (vectors) opposed to the 6475 vertices that define the
given triangulation T, i.e., by less than 2 % of the initial information.
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