
A New Voronoi-Based Surface Reconstruction Algorithm

Nina Amenta
�

UT - Austin
Marshall Bern
Xerox PARC

Manolis Kamvysselis
�

M.I.T.

Abstract

We describe our experience with a new algorithm for the recon-
struction of surfaces from unorganized sample points in � ��� . The al-
gorithm is the first for this problem with provable guarantees. Given
a “good sample” from a smooth surface, the output is guaranteed to
be topologically correct and convergent to the original surface as
the sampling density increases. The definition of a good sample is
itself interesting: the required sampling density varies locally, rig-
orously capturing the intuitive notion that featureless areas can be
reconstructed from fewer samples. The output mesh interpolates,
rather than approximates, the input points.

Our algorithm is based on the three-dimensional Voronoi dia-
gram. Given a good program for this fundamental subroutine, the
algorithm is quite easy to implement.

Keywords: Medial axis, Sampling, Delaunay triangulation, Com-
putational Geometry

1 Introduction

The process of turning a set of sample points in � � � into a computer
graphics model generally involves several steps: the reconstruction
of an initial piecewise-linear model, cleanup, simplification, and
perhaps fitting with curved surface patches.

We focus on the first step, and in particular on an abstract prob-
lem defined by Hoppe, DeRose, Duchamp, McDonald, and Stuet-
zle [14]. In this formulation, the input is a set of points in � ��� , with-
out any additional structure or organization, and the desired output
is a polygonal mesh, possibly with boundary. In practice, sample
sets for surface reconstruction come from a variety of sources: med-
ical imagery, laser range scanners, contact probe digitizers, radar
and seismic surveys, and mathematical models such as implicit sur-
faces. While the most effective reconstruction scheme for any one
of these applications should take advantage of the special proper-
ties of the data, an understanding of the abstract problem should
contribute to all of them.

The problem formulation above is incomplete, since presumably
we should require some relationship between the input and the out-
put. In this and a companion paper [2], we describe a simple, com-
binatorial algorithm for which we can prove such a relationship. A
�
Much of this work was done while the author was employed by Xerox

PARC, partially supported by NSF grant CCR-9404113.�
Much of this work was done while the author was an intern at Xerox

PARC.

Figure 1. The fist mesh was reconstructed from the vertices alone. Notice that the sam-

pling density varies. Our algorithm requires dense sampling only near small features;

given such an input, the output mesh is provably correct.

nontrivial part of this work is the fitting of precise definitions to the
intuitive notions of a “good sample” and a “correct reconstruction”.
Although the actual definition of a good sample is rather techni-
cal, involving the medial axis of the original surface, Figure 1 gives
the general idea: dense in detailed areas and (possibly) sparse in
featureless ones.

The algorithm is based on the three-dimensional Voronoi dia-
gram and Delaunay triangulation; it produces a set of triangles that
we call the crust of the sample points. All vertices of crust triangles
are sample points; in fact, all crust triangles appear in the Delaunay
triangulation of the sample points.

The companion paper [2] presents our theoretical results. In that
paper, we prove that given a good sample from a smooth surface,
the output of our reconstruction algorithm is topologically equiva-
lent to the surface, and that as the sampling density increases, the
output converges to the surface, both pointwise and in surface nor-
mal.

Theoretical guarantees, however, do not imply that an algorithm
is useful in practice. Surfaces are not everywhere smooth, samples
do not everywhere meet the sampling density conditions, and sam-
ple points contain noise. Even on good inputs, an algorithm may
fail to be robust, and the constants on the running time might be
prohibitively large. In this paper, we report on our implementation
of the algorithm, its efficiency and the quality of the output.

Overall, we were pleased. The program gave intuitively reason-
able outputs on inputs for which the theoretical results do not ap-
ply. The implementation, using a freely available exact-arithmetic
Voronoi diagram code, was quite easy, and reasonably efficient: it
can handle 10,000 points in a matter of minutes. The main diffi-
culty, both in theory and in practice, is the reconstruction of sharp
edges.

2 Related work

The idea of using Voronoi diagrams and Delaunay triangulations
in surface reconstruction is not new. The well–known � -shape of
Edelsbrunner et al. [9, 10] is a parameterized construction that as-
sociates a polyhedral shape with an unorganized set of points. A
simplex (edge, triangle, or tetrahedron) is included in the � -shape
if it has some circumsphere with interior empty of sample points,
of radius at most � (a circumsphere of a simplex has the vertices
of the simplex on its boundary). The spectrum of � -shapes, that is,
the � -shapes for all possible values of � , gives an idea of the over-
all shape and natural dimensionality of the point set. Edelsbrunner
and Mücke experimented with using � -shapes for surface recon-
struction [10], and Bajaj, Bernardini, and Xu [4] have recently used� -shapes as a first step in the entire reconstruction pipeline.

An early Delaunay-based algorithm, similar in spirit to our own,
is the “Delaunay sculpting” heuristic of Boissonnat [6], which
progressively eliminates tetrahedra from the Delaunay triangula-
tion based on their circumspheres. In two dimensions, there are
a number of recent theoretical results on various Delaunay-based
approaches to reconstructing smooth curves. Attali [3], Bernar-
dini and Bajaj [5], Figueiredo and Miranda Gomes [11] and our-
selves [1] have all given guarantees for different algorithms.

A fundamentally different approach to reconstruction is to use
the input points to define a signed distance function on � � � , and
then polygonalize its zero-set to create the output mesh. Such zero-
set algorithms produce approximating, rather than interpolating,
meshes. This approach was taken by Hoppe et al. [14, 13] and more
recently by Curless and Levoy [8]. Hoppe et al. determine an ap-
proximate tangent plane at each sample point using least squares on�

nearest neighbors, and then take the signed distance to the nearest
point’s tangent plane as the distance function on � � � . The distance
function is then interpolated and polygonalized by the marching
cubes algorithm. The algorithm of Curless and Levoy is tuned for
laser range data, from which they derive error and tangent plane
information. They combine the samples into a continuous volumet-
ric function, computed and stored on a voxel grid. A subsequent
hole-filling step also uses problem-specific information. Their im-
plementation is especially fast and robust, capable of handling very
large data sets.

Functionally our crust algorithm differs from both the � -shape
and the zero-set algorithms. It overcomes the main drawback of� -shapes as applied to surface reconstruction, which is that the pa-
rameter � must be chosen experimentally, and in many cases there
is no ideal value of � due to variations in the sampling density.
The crust algorithm requires no such parameter; it in effect auto-
matically computes the parameter locally. Allowing the sampling
density to vary locally enables detailed reconstructions from much
smaller input sets.

Like the � -shape, the crust can be considered an intrinsic con-
struction on the point set. But unlike the � -shape, the crust is natu-
rally two-dimensional. This property makes the crust more suitable
for surface reconstruction, although less suitable for determining
the natural dimensionality of a point set.

The crust algorithm is simpler and more direct than the zero-
set approach. Zero-set algorithms, which produce approximating
rather than interpolating surfaces, inherently do some low-pass fil-
tering of the data. This is desirable in the presence of noise, but
causes some loss of information. We believe that some of our
ideas, particularly the sampling criterion and the normal estimation
method, can be applied to zero-set algorithms as well, and might be
useful in proving some zero-set algorithm correct.

With its explicit sampling criterion, our algorithm should be
most useful in applications in which the sampling density is easy
to control. Two examples are digitizing an object with a hand-
held contact probe, where the operator can “eyeball” the re-

quired density, and polygonalizing an implicit surface using sample
points [12], where the distribution can be controlled analytically.

3 Sampling Criterion

Our theoretical results assume a smooth surface, by which we mean
a twice-differentiable manifold embedded in � ��� . Notice that this
allows all orientable manifolds, including those with multiple con-
nected components.

3.1 Geometry

We start by reviewing some standard geometric constructions.
Given a discrete set � of sample points in � ��� , the Voronoi cell
of a sample point is that part of � � � closer to it than to any other
sample. The Voronoi diagram is the decomposition of � � � induced
by the Voronoi cells. Each Voronoi cell is a convex polytope, and
its vertices are the Voronoi vertices; when � is nondegenerate, each
Voronoi vertex is equidistant from exactly ���
	 points of � . These
����	 points are the vertices of the Delaunay simplex, dual to the
Voronoi vertex. A Delaunay simplex, and hence each of its faces,
has a circumsphere empty of other points of � . The set of Delau-
nay simplices form the Delaunay triangulation of � . Computing
the Delaunay triangulation essentially computes the Voronoi dia-
gram as well. See Figure 5 for two-dimensional examples.

Figure 2. The red curves are the medial axis of the black curves. Notice that compo-

nents of the medial axis lie on either side of the black curves.

Figure 3. In three dimensions, the medial axis of a surface is generally a two-

dimensional surface. Here, the square is the medial axis of the rounded transparent

surface. A nonconvex surface would have components of the medial axis on the out-

side as well, as in the 2D example of Figure 2.

The medial axis of a �����	�� -dimensional surface in � � � is (the
closure of) the set of points with more than one closest point on
the surface. An example in � ��� is shown in Figure 2, and in � � � in
Figure 3. This definition of the medial axis includes components
on the exterior of a closed surface. The medial axis is the extension
to continuous surfaces of the Voronoi diagram, in the sense that the

Voronoi diagram of � can be defined as the set of points with more
than one closest point in � .

In two dimensions, the Voronoi vertices of a dense set of sam-
ple points on a curve approximate the medial axis of the curve.
Somewhat surprisingly—a number of authors have been misled—
this nice property does not extend to three dimensions.

3.2 Definition

We can now describe our sampling criterion. A good sample is one
in which the sampling density is (at least) inversely proportional
to the distance to the medial axis. Specifically, a sample � is an� -sample from a surface

�
when the Euclidean distance from any

point ��� � to the nearest sample point is at most � times the
distance from � to the nearest point of the medial axis of

�
.

The constant of proportionality � is generally less than one. In
the companion paper [2], we prove our theorems for small values
of � such as ����� 	�
 , but the bounds are not tight. Hence the
theoretical results apply only when the sampling is very dense.

We observe that in practice ���� � generally suffices. Figure 4
shows a reconstruction from a dense sample, and from a sample
thinned to roughly ����� � . We did not compute the medial axis,
which can be quite a chore. Instead, we used the distance to the
nearest “pole” (see Section 4.2) as a reasonable, and easily com-
puted, estimate of the distance to the medial axis.

Figure 4. The sampling spacing required to correctly reconstruct a surface is propor-

tional to the distance to the medial axis. On the left is a surface reconstructed from

a dense sample. The color represents estimated distance to medial axis—red means

close. On the right, we use the estimated distance to thin the data to a � � -sample

(meaning that the distance to the nearest sample for any point on the surface is at most

half the distance to the medial axis), and then reconstruct. There were about 12K

samples on the left and about 3K on the right.

Notice that our sampling criterion places no constraints on the
distribution of points, so long as they are sufficiently dense. It in-
herently takes into account both the curvature of the surface—the
medial axis is close to the surface where the curvature is high—
and also the proximity of other parts of the surface. For instance,
although the middle of a thin plate has low curvature, it must be
sampled densely to resolve the two sides as separate surfaces. In
this situation an � -sample differs from the distribution of vertices
typically produced by mesh simplification algorithms, which only
need to consider curvature.

At sharp edges and corners, the medial axis actually touches the
surface. Accordingly, our criterion requires infinitely dense sam-
pling to guarantee reconstruction. Sharp edges are indeed a prob-

Figure 5. The two-dimensional algorithm. On the left, the Voronoi diagram of a point

set � sampled from a curve. Just as � approximates the curve, the Voronoi vertices �
approximate the medial axis of the curve. On the right, the the Delaunay triangulation

of ����� , with the crust edges in black. Theorem 1 states that when � is an � -sample,

for sufficiently small � , the crust edges connect only adjacent vertices.

lem in practice as well, although the reconstruction errors are not
noticeable when the sampling is very dense. We discuss a heuris-
tic approach to resolving sharp edges in Section 6, and propose a
stronger theoretical approach in Section 7.

4 The crust algorithm

4.1 Two Dimensions

We begin with a two-dimensional version of the algorithm [1]. In
this case, the crust will be a graph on the set of sample points � .
We define the crust as follows: an edge � belongs to the crust if
� has a circumcircle empty not only of all other sample points but
also of all Voronoi vertices of � . The crust obeys the following
theorem [1].

Theorem 1. The crust of an � -sample from a smooth curve
�

, for����� ��� , connects only adjacent sample points on
�

.

The medial axis provides the intuition behind this theorem. An
important lemma is that for any sample � , an edge between two
nonadjacent sample points cannot be circumscribed by a circle that
misses both the medial axis and all other samples. When � is an� -sample for sufficiently small � , the Voronoi vertices approximate
the medial axis, and any circumcircle of an edge between nonad-
jacent samples contains either another sample or a Voronoi vertex.
An edge between two adjacent samples, on the other hand, is cir-
cumscribed by a small circle, far away from the medial axis and
hence from all Voronoi vertices.

The definition of the two-dimensional crust leads to the follow-
ing simple algorithm, illustrated in Figure 5. First compute the
Voronoi diagram of � , and let � be the set of Voronoi vertices.
Then compute the Delaunay triangulation of � �!� . The crust con-
sists of the Delaunay edges between points of � , since those are
the edges with circumcircles empty of points in ��� . Notice that
the crust is also a subset of the Delaunay triangulation of the input
points; adding the Voronoi vertices filters out the unwanted edges
from the Delaunay triangulation. We call this technique Voronoi
filtering.

4.2 Three Dimensions

This simple Voronoi filtering algorithm runs into a snag in three
dimensions. The nice property that all the Voronoi vertices of a
sufficiently dense sample lie near the medial axis is no longer true.
Figure 6 shows an example. No matter how densely we sample,
Voronoi vertices can appear arbitrarily close to the surface.

Figure 6. In three dimensions, we can use only a subset of the Voronoi vertices, since

not all Voronoi vertices contribute to the approximation of the medial axis. Here, one

sample on a curved surface is colored blue, and the edges of its three-dimensional

Voronoi cell are drawn in red. One red Voronoi vertex lies near the surface, equidistant

from the four samples near the center. The others lie near the medial axis, near the

center of curvature on one side and halfway to an opposite patch of the surface on the

other.

On the other hand, many of the three-dimensional Voronoi ver-
tices do lie near the medial axis. Consider the Voronoi cell � � of
a sample � , as in Figure 6. The sample � is surrounded on

�
by

other samples, and � � is bounded by bisecting planes separating �

from its neighbors, each plane nearly perpendicular to
�

. So the
Voronoi cell � � is long, thin and roughly perpendicular to

�
at � .

� � extends perpendicularly out to the medial axis. Near the medial
axis, other samples on

�
become closer than � , and � � is cut off.

This guarantees that some vertices of � � lie near the medial axis.
We give a precise and quantitative version of this rough argument
in [2].

This leads to the following algorithm. Instead of using all of the
Voronoi vertices in the Voronoi filtering step, for each sample � we
use only the two vertices of � � farthest from � , one on either side
of the surface

�
. We call these the poles of � , and denote them �

�

and ��� . It is easy to find one pole, say �
�

: the farthest vertex of
� � from � . The observation that � � is long and thin implies that the
other pole � � must lie roughly in the opposite direction. Thus in the
basic algorithm below, we simply choose ��� to be farthest vertex
from s such that � � � and � �

�
have negative dot-product. Here is

the basic algorithm:

1. Compute the Voronoi diagram of the sample points �
2. For each sample point � do:

(a) If � does not lie on the convex hull, let �
�

be the farthest
Voronoi vertex of � � from � . Let �

�
be the vector � � � .

(b) If � lies on the convex hull, let �
�

be the average of the
outer normals of the adjacent triangles.

(c) Let � � be the Voronoi vertex of � � with negative pro-
jection on �

�
that is farthest from � .

3. Let
�

be the set of all poles �
�

and � � . Compute the Delau-
nay triangulation of � � � .

4. Keep only those triangles for which all three vertices are sam-
ple points in � .

Notice that one does not need an estimate of � to use the crust
algorithm; the basic algorithm requires no tunable parameters at
all. The output of this algorithm, the three-dimensional crust, is a
set of triangles that resembles the input surface geometrically. More
precisely, we prove the following theorem [2].

Theorem 2. Let � be an � -sample from a smooth surface
�

, for����� 	�
 . Then 1) the crust of � contains a set of triangles forming a
mesh topologically equivalent to

�
, and 2) every point on the crust

lies within distance � �	� � � � of some point � on
�

, where � � � is
the distance from � to the medial axis.

The crust, however, is not necessarily a manifold; for example, it
often contains all four triangles of a very flat “sliver” tetrahedron.
It is, however, a visually acceptable model.

Figure 7. The crust of a set of sample points and the poles (white points) used in its

reconstruction. Each sample selects the two vertices of its Voronoi cell that are farthest

away, one on either side of the surface, as poles. The poles lie near the medial axis of

the surface, sketching planes separating opposite sheets of surface that degenerate to

one-dimensional curves where the cross-section of the surface is circular.

4.3 Normal Estimation and Filtering

Additional filtering is required to produce a guaranteed piecewise-
linear manifold homeomorphic to

�
, and to ensure that the output

converges in surface normal as the sampling density increases.
In fact, whatever the sampling density, the algorithm above may

output some very thin crust triangles nearly perpendicular to the
surface. We have an important lemma [2], however, which states
that the vectors �

� �
� �
�

and ��� ��� ��� from a sample point to
its poles are guaranteed to be nearly orthogonal to the surface at � .
The angular error is linear in � . The intuition (put nicely by Ken
Clarkson) is that the surface normal is easy to estimate from a point
far away, such as a pole � , since the surface must be nearly normal
to the largest empty ball centered at � .

We can use these vectors in an additional normal filtering step,
throwing out any triangles whose normals differ too much from �

�

or ��� . When normal filtering is used, the normals of the output
triangles approach the surface normals as the sampling density in-
creases. We prove in [2] that the remaining set of triangles still con-
tains a subset forming a piecewise-linear surface homeomorphic to�

.

Figure 8. The crust of points distributed on an implicit surface (left). The additional

normal filtering step is needed to separate the two connected components (right), which

are undersampled at their closest point. Triangles are deleted if their normals differ too

much from the direction vectors from the triangle vertices to their poles. These vectors

are provably close to the surface normals.

Normal filtering can be useful in practice as well, as shown in
Figure 8. In the usual case in which � is unknown the allowable
difference in angle must be selected experimentally. Normal filter-
ing can be dangerous, however, at boundaries and sharp edges. The
directions of �

�
and ��� are not nearly normal to all nearby tangent

planes, and desirable triangles might be deleted.
We note that �

�
and � � , our Voronoi-based estimates of nor-

mal direction, could be useful in the zero-set reconstruction meth-
ods, which depend on accurate estimation of the tangent planes.
For the algorithm of Hoppe et al. [14], a Voronoi-based estimate
could replace the estimate based on the

�
-nearest neighbors. The

Voronoi-based estimate has the advantage that it is not sensitive to
the distribution; whereas, for instance, on medical image data, all�

nearest neighbors might lie in the same slice, and so would the
estimated tangent plane. In the algorithm of Curless and Levoy [8],
the Voronoi-based estimate could be checked against the bounds on
normal direction derived from the laser-range scanner.

4.4 Manifold Extraction

After the normal filtering step, all the remaining triangles are
roughly parallel to the surface. We can define a sharp edge as one
which is adjacent to triangles only on one side of a plane through the
edge and roughly perpendicular to the surface. Notice that an edge
of degree one counts as a sharp edge. If the surface

�
is indeed

a smooth manifold without boundary, we are guaranteed that the
normal-filtered crust contains a piecewise-linear manifold homeo-
morphic to

�
. Any triangle adjacent to a sharp edge cannot belong

to this piecewise-linear manifold, and can be safely deleted. We
continue recursively until no such triangle remains. A piecewise-
linear manifold can then be obtained by a manifold extraction step
which takes the outside surface of the remaining triangles on each
connected component. This simple approach, however, cannot be
applied when

�
is not a smooth manifold without boundary. In that

case we do not know how to prove that we can extract a manifold
homeomorphic to

�
.

4.5 Complexity

The asymptotic complexity of the crust algorithm is
� � ��� where

� ��� � � , since that is the worst-case time required to compute a
three-dimensional Delaunay triangulation. Notice that the number
of sample points plus poles is at most � � . As has been frequently
observed, the worst-case complexity for the three-dimensional De-
launay triangulation almost never arises in practice. All other steps
are linear time.

5 Implementation

5.1 Numerical Issues

Robustness has traditionally been a concern when implementing
combinatorial algorithms like this one. Our straightforward imple-
mentation, however, is very robust. This success is due in large
part to the rapidly improving state of the art in Delaunay triangula-
tion programs. We used Clarkson’s Hull program. Hull uses exact
integer arithmetic, and hence is thoroughly robust, produces exact
output, and requires no arithmetic tolerancing parameters. The per-
formance cost for the exact arithmetic is fairly modest, due to a
clever adaptive precision scheme. We chose Hull so that we could
be sure that numerical problems that arose were our own and did
not originate in the triangulation. Finding the exact Delaunay trian-
gulation is not essential to our algorithm.

Hull outputs a list of Delaunay tetrahedra, but not the coordi-
nates of their circumcenters (the dual Voronoi vertices) which al-
ways contain some roundoff error. Fortunately, the exact positions
of the poles are not important, as the numerical error is tiny relative
to the distance between the poles and the surface. We computed the
location of each Voronoi vertex by solving a ����� linear system
with a solver from LAPACK. The solver also returns the condition
number of the coefficient matrix, which we used to reject unreli-
able Voronoi vertices. Rejected Voronoi vertices were almost al-
ways circumcenters of “slivers” (nearly planar tetrahedra) lying flat
on the surface; for a good sample such vertices cannot be poles. It
is possible that this method also rejects some valid poles induced by
very flat tetrahedra spanning two patches of surface. We have not,
however, observed any problems in practice. Presumably there is
always another Voronoi vertex nearby that makes an equally good
pole.

5.2 Efficiency

Running times for the reconstruction of some large data sets are
given in the table below; the reconstructions are shown in Figure 9.
We used an SGI Onyx with 512M of memory.

Model Time (min) Num. Pts.

Femur 2 939
Golf club 12 16864
Foot 15 20021
Bunny 23 35947

The running time is dominated by the time required to com-
pute the Delaunay triangulations. Hull uses an incremental algo-
rithm [7], so the running time is sensitive to the input order of the
vertices. The triangulation algorithm builds a search structure con-
currently with the triangulation itself; the process is analogous to
sorting by incrementally building a binary search tree. When points
are added in random order, the search structure is balanced (with
extremely high probability) and the expected running time is opti-
mal. In practice, random insertions are slow on large inputs, since
both the search structure and the Delaunay triangulation begin pag-
ing. We obtained better performance by first inserting a random
subset of a few thousand points to provide a balanced initial search
structure, and then inserting the remaining points based on a crude
spatial subdivision to improve locality.

Most likely much greater improvements in efficiency can be
achieved by switching to a three-dimensional Delaunay triangula-
tion program that, first, does not use exact arithmetic, and second,
uses an algorithm with more locality of reference.

Figure 9. Femur, golf club, foot and bunny reconstructions. Notice the subtle “3” on the bottom of the club (apparently a 3-iron), showing the sensitivity of the algorithm. The foot,

like all our reconstructions, is hollow. The bunny was reconstructed from the roughly 36K vertices of the densest of the Stanford bunny models in 23 minutes.

6 Heuristic Modifications

As we have noted, our algorithm does not do well at sharp edges,
either in theory or in practice. The reason is that the Voronoi cell
of a sample � on a sharp edge is not long and thin, so that the as-
sumptions under which we choose the poles is not correct. For
example, the Voronoi cell of a sample � on a right-angled edge is
roughly fan-shaped. The vector �

�
directed towards the first pole

of � might be perpendicular to one tangent plane at � , but parallel
to the other. The second pole would then be chosen very near the
surface, punching a hole in the output mesh.

Figure 10. We resolve the sharp edges on this model of a mechanical part by using

the two farthest Voronoi vertices as poles, regardless of direction. The basic algorithm

forces the poles to lie in opposite directions, but is only guaranteed to work properly

on a smooth surface. The red triangles do not appear in the reconstruction when using

the basic algorithm.

We experimented with other methods for choosing the second
pole. We found that choosing as � � the Voronoi vertex with the
greatest negative projection in the direction �

�
gave somewhat bet-

ter results. This modification should retain the theoretical guaran-
tees of the original algorithm. The best reconstructions, however,
were produced by a different heuristic: choosing the farthest and
the second farthest Voronoi vertices, regardless of direction, as the
two poles (see Figure 10). This heuristic is strongly biased against
choosing poles near the surface, avoiding gaps near sharp edges but
sometimes allowing excess triangles filling in sharp corners. We
believe that pathological cases could be constructed in which this
fill causes a topologically incorrect reconstruction irrespective of
the sampling density.

Boundaries pose similar problems in theory, but the reconstruc-
tions produced by the crust algorithm on surfaces with boundaries
are usually acceptable. Figure 7 and the foot in Figure 9 are ex-
amples of perfectly reconstructed boundaries. When the boundary
forms a hole in an otherwise flat surface, with no other parts of the
surface nearby, the crust algorithm fills in the hole.

Undersampling also causes holes in the output mesh. For ex-
ample, consider a sample in the middle of a a flat plate. Although
its second pole lies in the correct direction, if there are two few
sample points on the opposite side of the plate, the pole may fall
near the surface on the opposite side and cause a hole. We experi-
mented with heuristics to compensate for this undersampling effect,
and for similar reconstruction errors in undersampled cylindrical
regions. We found that moving all poles closer to their samples by
some constant fraction allowed thin plates and cylinders to be re-
constructed from fewer samples, while sometimes introducing new
holes on other parts of the model. We were sometimes able to get a
perfect reconstruction by taking the union of a crust made with this
modification and one without.

7 Research Directions

We have identified a number of future research directions.

7.1 Noise

Small perturbations of the input points do not cause problems for
the crust algorithm, nor do a few outliers. But when the noise level
is roughly the same as the sampling density, the algorithm fails,
both in theory and in practice. We believe, however, that there is a
Voronoi-based algorithm, perhaps combining aspects of crusts and� -shapes, that reconstructs noisy data into a “thickened surface”
containing all the input points, some of them possibly in the interior.
See Melkemi [15] for some suggestive experimental work in � � � .

7.2 Sharp Edges and Boundaries

We would like to modify the crust algorithm to handle surfaces
with sharp edges and to provide theoretical guarantees for the re-
construction of both sharp edges and boundaries. Interpolating
reconstruction algorithms like ours have an advantage here, since
approximating reconstruction algorithms smooth out sharp edges.
One important goal is to develop reliable techniques for identify-
ing samples that lie on sharp edges or boundaries. As noted, the
Voronoi cells of such samples are not long and thin. This intuition

could be made precise, and perhaps combined with more traditional
filtering techniques.

7.3 Using Surface Normals

A variation on the problem is the reconstruction of surfaces from
unorganized points that are equipped with normal directions. This
problem arises in two-dimensional image processing when connect-
ing edge pixels into edges. In three dimensions, laser range data
comes with some normal information, and we have exact normals
for points distributed on implicit surfaces. It should be possible to
show that with this additional information, reconstruction is pos-
sible from much sparser samples. In particular, when normals are
available, dense sampling should not be needed to resolve the two
sides of a thin plate, suggesting that a different sampling criterion
than distance to medial axis is required.

7.4 Compression

One intriguing potential application (pointed out by Frank Bossen)
of interpolating, rather than approximating reconstruction, is that it
can be used as a lossless mesh compression technique. A model cre-
ated by interpolating reconstruction can be represented entirely by
its vertices, and no connectivity information at all must be stored.
A model which differs only slightly from the reconstruction of its
vertices can be represented by the vertices and a short list of differ-
ences. These differences might be encoded efficiently using some
geometrically defined measure of “likelihood” on Delaunay trian-
gles. The vertices themselves could then be ordered so as to opti-
mize properties such as compressibility or progressive reconstruc-
tion by an incremental algorithm. With the current best geometry
compression method [16], most of the bits are already used to en-
code the vertex positions, rather than connectivity, but the connec-
tivity is encoded in the ordering of the vertices. Allowing arbitrary
vertex orderings could improve compression; we are experimenting
with an octree encoding.

Our current crust algorithm is not incremental, and our imple-
mentation is too slow for real-time decompression, so this applica-
tion motivates work in both directions.

Figure 11. Reconstructions from subsets of the samples resemble the final reconstruc-

tions. The crust of the first 5 % of the points in an octree encoding of the bunny samples

is still quite recognizable (right); the crust of 20 % of the points is on the left. Rough

reconstructions like these could be shown during progressive transmission.

Acknowledgments

We thank David Eppstein (UC–Irvine) for his collaboration in the
early stages of this research, and Frank Bossen (EPF–Lausanne)
and Ken Clarkson (Lucent) for interesting suggestions. We thank
Ping Fu (Raindrop Geomagic) for the fist and the mechanical part,
Hughes Hoppe (Microsoft) for the head, the golf club and the foot,

Chandrajit Bajaj (UT–Austin) for the femur, Paul Heckbert (CMU)
for the hot dogs, and the Stanford Data Repository for the bunny.
We thank Ken Clarkson and Lucent Bell Labs for Hull, and The Ge-
ometry Center at the University of Minnesota for Geomview, which
we used for viewing and rendering the models.

References

[1] Nina Amenta, Marshall Bern and David Eppstein. The Crust
and the

�
-Skeleton: Combinatorial Curve Reconstruction. To

appear in Graphical Models and Image Processing.

[2] Nina Amenta and Marshall Bern. Surface reconstruction by
Voronoi filtering. To appear in 14th ACM Symposium on Com-
putation Geometry, June 1998.

[3] D. Attali. � -Regular Shape Reconstruction from Unorganized
Points. In 13th ACM Symposium on Computational Geometry,
pages 248–253, June 1997.

[4] C. Bajaj, F. Bernardini, and G. Xu. Automatic Reconstruction
of Surfaces and Scalar Fields from 3D Scans. SIGGRAPH ’95
Proceedings, pages 109–118, July 1995.

[5] F. Bernardini and C. Bajaj. Sampling and reconstructing man-
ifolds using � -shapes, In 9th Canadian Conference on Com-
putational Geometry, pages 193–198, August 1997.

[6] J-D. Boissonnat. Geometric structures for three-dimensional
shape reconstruction, ACM Transactions on Graphics 3: 266–
286, 1984.

[7] K. Clarkson, K. Mehlhorn and R. Seidel. Four results on ran-
domized incremental constructions. Computational Geome-
try: Theory and Applications, pages 185–121, 1993.

[8] B. Curless and M. Levoy. A volumetric method for building
complex models from range images. In SIGGRAPH ’96 Pro-
ceedings, pages 303–312, July 1996.

[9] H. Edelsbrunner, D.G. Kirkpatrick, and R. Seidel. On the
shape of a set of points in the plane, IEEE Transactions on
Information Theory 29:551-559, (1983).

[10] H. Edelsbrunner and E. P. Mücke. Three-dimensional Alpha
Shapes. ACM Transactions on Graphics 13:43–72, 1994.

[11] L. H. de Figueiredo and J. de Miranda Gomes. Computational
morphology of curves. Visual Computer 11:105–112, 1995.

[12] A. Witkin and P. Heckbert. Using particles to sample and con-
trol implicit surfaces, In SIGGRAPH ’94 Proceedings, pages
269–277, July 1994.

[13] H. Hoppe. Surface Reconstruction from Unorganized Points.
Ph.D. Thesis, Computer Science and Engineering, University
of Washington, 1994.

[14] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W.
Stuetzle. Surface Reconstruction from Unorganized Points. In
SIGGRAPH ’92 Proceedings, pages 71–78, July 1992.

[15] M. Melkemi, � -shapes and their derivatives, In 13th ACM
Symposium on Computational Geometry, pages 367–369,
June 1997

[16] G. Taubin and J. Rossignac. Geometric compression through
topological surgery. Research Report RC20340, IBM, 1996.

