Surface Approximation for Computer Graphics

Michael Garland University of Illinois at Urbana–Champaign

The Situation

- Resources are limited
 - disk, RAM, GPU, CPU, dpi, ...

- Many meshes are "bad"
 - too many triangles
 - triangles that poorly sample the surface

Our World-View

- Interactive display is the ultimate application
 - want something like 30 frames per second

Polygons much smaller than a pixel don't really matter

The Problem

Blindly Regular Meshes

Irregular Meshes

Massive Meshes

David 57 million triangles I.4 Gigabytes I mm resolution

> St. Matthew 300 million triangles 6.5 Gigabytes 1⁄4 mm resolution

Historical Aside: What is Big?

1997 I million triangles

2000 300 million triangles

Not quite manifold

Artificially high genus

Noise & Grid Artifacts

What do we want?

• Only as many triangles as really necessary

Tessellation that adapts to geometry

Curvature adaptation

Want triangle aspect ratio of:

$$\rho = \sqrt{\left|\frac{\kappa_2}{\kappa_1}\right|}$$

Hierarchical Surfaces

172,974 vertices

20,000 vertices

5000 vertices

Out-of-core Processing

- 6.5 GB of raw data
- Impractical to load into RAM

Surface Simplification

Simplification Framework

Greedy iterative contraction

- I. rank all edges by cost metric
- 2. contract minimum cost edge
- 3. update edge costs

How to measure Cost?

• Want to allow points to move over surface

- measure deviation from surface
- this is expensive
- An approximation would require points to remain close to the local tangent planes

Quadric Error Metric

Given a tangent plane, we can define a *quadric* $Q = (\mathbf{A}, \mathbf{b}, \mathbf{c}) = (\mathbf{nn}^T, -\mathbf{Ap}, \mathbf{p}^T\mathbf{Ap})$ Measuring the squared distance of point to the plane $Q(\mathbf{x}) = \mathbf{x}^T\mathbf{Ax} + 2\mathbf{b}^T\mathbf{x} + \mathbf{c}$

Quadric Error Metric

Sum of quadrics represents a set of planes

$$\sum_{i} \left((\mathbf{x} - \mathbf{p}_{i})^{\mathsf{T}} \mathbf{n}_{i} \right)^{2} = \sum_{i} Q_{i}(\mathbf{x}) = \left(\sum_{i} Q_{i} \right) (\mathbf{x})$$

Any set of vertices has an associated quadric

- sum over faces with corner in set
- find representative minimizing error

$$\nabla Q(\mathbf{x}^{\star}) = \mathbf{0} \qquad \qquad \mathbf{A}\mathbf{x}^{\star} = -\mathbf{b}$$

Algorithm Overview

- Initialization
 - Compute quadric for each vertex from planes of surrounding faces
- Iterative Contraction
 - Repeatedly contract the edge of least cost
 - Add quadrics when contracting edges

Sample Results

Less than 13 seconds on 1GHz Pentium III

Demo

Generalized Simplification

Beyond Triangulated Surfaces

Quadric Error Metric

Any d-simplex has a tangent space of dimension d with orthonormal tangent vectors e_1, \ldots, e_d

Squared distance of a point to this tangent space:

$$(\mathbf{x} - \mathbf{p})^{\mathsf{T}} \left(\mathbf{I} - \sum_{i=1}^{d} \mathbf{e}_{i} \mathbf{e}_{i}^{\mathsf{T}} \right) (\mathbf{x} - \mathbf{p})$$

Quadric Error Metric

Squared distance of a point to this tangent space:

$$Q(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} + 2\mathbf{b}^{\mathsf{T}} \mathbf{x} + \mathbf{c}$$

True of any *d*-simplex in any Euclidean *n*-space

Non-manifold Plane Curve with Boundary

20,001 vertices

8 l vertices

Surfaces with Attributes

50,000

10,000

3000

1500

Blunt Fin CFD Data

224,874 tetrahedra 44,969 tetrahedra

l I,235 tetrahedra 4960 tetrahedra

Liquid Oxygen Post

616,050 tetrahedra 144,000 tetrahedra

72,000 tetrahedra

Titan IV Rocket

3.5 minutes

Titan IV Boundary

Mixed Complexes

10,710 vertices

5000 vertices

1000 vertices

Massive Meshes

Overall Approach

• Memory usage independent of input size

• Single linear scan of input data

Out-of-Core Clustering

- Single pass spatial clustering
 - partition space into cells
 - merge all vertices within a cell

- Usual suspects for cell decomposition
 - uniform grids, BSP trees, octrees

Grids Go Bad in the End

Our Multiphase System

Phase I

- an initial clustering on fine grid
- accumulate quadrics for all faces in grid

Phase II

- iterative contraction
- using quadrics from Phase I

1000 Face Approximation

Uniform Grid (46 seconds)

Multiphase (65 seconds)

St. Matthew Sample

300 million

I million

100,000

5000

What is Simplification?

Simplification is Partitioning

Conclusion

Summary

- Handles non-manifolds of any dimension
- Attractive blend of efficiency and quality
- Simple to implement

• But ... no (real) quality guarantees

Extreme Complexity Remains Hard

