
To Appear in SIGGRAPH 2006

Editing Arbitrarily Deforming Surface Animations

Scott Kircher∗ Michael Garland

University of Illinois at Urbana–Champaign

Figure 1: Taking a piece of deforming, motion-captured cloth (top), we can easily perform a broad range of edits, including multiresolution
embossing of a person’s face (bottom). Note how nicely the face bends with the deformations present in the original animation.

Abstract

Deforming surfaces, such as cloth, can be generated through physi-
cal simulation, morphing, and even video capture. Such data is cur-
rently very difficult to alter after the generation process is complete,
and data generated for one purpose generally cannot be adapted to
other uses. Such adaptation would be extremely useful, however.
Being able to take cloth captured from a flapping flag and attach it
to a character to make a cape, or enhance the wrinkles on a simu-
lated garment, would greatly enhance the usability and re-usability
of deforming surface data. In addition, it is often necessary to
cleanup or “tweak” simulation results. Doing this by editing each
frame individually is a very time consuming and tedious process.
Extensive research has investigated how to edit and re-use skele-
tal motion capture data, but very little has addressed completely
non-rigid deforming surfaces. We have developed a novel method
that now makes it easy to edit such arbitrary deforming surfaces.
Our system enables global signal processing, direct manipulation,
multiresolution embossing, and constraint editing on arbitrarily de-
forming surfaces, such as simulated cloth, motion-captured cloth,
morphs, and other animations. The foundation of our method is a
novel time-varying multiresolution transform, which adapts to the
changing geometry of the surface in a temporally coherent manner.

Keywords: deforming surface editing, multiresolution editing,
mesh signal processing, adaptive wavelets, pyramid schemes

∗e-mail: {kircher,garland}@uiuc.edu

1 Introduction

Movie and digital effects production involves heavy use of deform-
ing surfaces. For example, the loose fitting portions of a character’s
garment are generally simulated cloth. Such physically simulated
deforming surfaces are quite expensive to generate. Moreover, de-
spite recent improvements in the behavior of cloth simulators [Brid-
son et al. 2003; Baraff et al. 2003; Choi and Ko 2002], the design
process of tweaking initial conditions to get the results “just right”
remains notoriously time consuming and labor intensive. This pro-
cess would be greatly improved by a method for editing a deforming
surface after it has been generated.

Recent advances in cloth motion capture [Guskov et al. 2003;
Scholz et al. 2005; White et al. 2005] point toward a future where
cloth motion data is routinely captured to supplement simulations.
Human skeletal motion capture has become ubiquitous in produc-
tion environments. Being able to alter and re-use such motion cap-
ture data is an important and interesting problem that has become
the focus of a great deal of research. As with skeletal motion cap-
ture data, there will be a pressing need for good ways to edit and
“tweak” cloth motion capture data to adapt it to different purposes.
For example, cloth that was captured flapping in the breeze could
be adapted to look as if it was hit by something at a certain point
in time, even though the original data contained no such event. Or
perhaps the captured cloth data has the desired general motion, but
not quite the right material. Filtering out or enhancing certain ge-
ometric frequencies can alter the appearance and “feel” of cloth in
subtle ways, making the data more versatile. Again, this is a sit-
uation where pre-deforming surface editing and signal processing
would be extremely useful.

Editing of arbitrarily deforming surfaces is a largely un-addressed
problem, but one which is likely to become very important as sim-
ulation and motion capture technology advances. Methods devel-
oped for other purposes can sometimes be used to perform a limited

1

To Appear in SIGGRAPH 2006

set of editing operations on deforming surface data. However, to
the best of our knowledge, our work is the first to provide a unified
framework for a very general set of editing operations.

Our goal is to provide a system allowing animators to easily edit
and manipulate deforming surface data. The deforming surfaces
we consider are represented by a sequence of triangle meshes with
static connectivity, where the surface motion is specified by a com-
plete set of new vertex positions for each frame. The mesh connec-
tivity should be manifold or manifold with boundaries.

To achieve our goal, we have developed a system that can perform
global geometric signal processing, direct manipulation of the sur-
face, multiresolution embossing, and constraint-based editing on
an arbitrarily deforming mesh. Our approach is entirely geometric.
We do not consider the dynamics of cloth, or the material properties
of the original surface. This makes our technique versatile enough
to be applied to many different kinds of data, such as morphs and
other animations.

We present a multiresolution editing and geometric signal approach
for deforming surfaces that is based, in part, on techniques that
have been shown to work well in the static case [Zorin et al. 1997;
Guskov et al. 1999]. This multiresolution approach not only sup-
ports signal processing, but also yields more intuitive results when
transporting edits to other frames of an animation. Underlying our
system is a time-varying multiresolution transform that, through a
technique we call basis smoothing, yields temporally coherent sig-
nal processing and editing results even in the presence of a changing
multiresolution hierarchy. Other contributions of our paper include
a vertex teleportation extension to Kircher & Garland’s [2005] hi-
erarchy improvement algorithm and an improved irregular mesh
wavelet compression scheme, using our time-varying transform,
based on Guskov & Khodakovsky’s [2004] wavelet compression
method.

2 Related Work

Dynamic Surface Editing. One of the few existing methods
that can be used to edit an already deforming surface, with no pre-
existing controls, is due to James & Twigg [2005]. They fit a set of
nonrigid bones to an existing deforming surface, thereby encoding
the animation as a static mesh and a sequence of bone transforma-
tions. In addition, they encode deviations of the true surface from
the skinned result. This allows limited editing, either by modifying
the bone transformations, or by adding rest-pose displacement ed-
its. However, their focus was not on editing but rather on limiting
bandwidth requirements for fast GPU rendering, and their method
assumes the animation consists mainly of articulated motion. As
they point out, this makes their method less suitable for cloth and
other non-articulated deformations.

Sumner et al. [2005] have developed a mesh-based inverse kine-
matics method that could be extended to provide limited editing of
an already deforming surface. By placing time-varying constraints,
the user could produce novel animations from existing animations.
However, this method provides no facility for more detailed edits or
applying new deformations to the object that are completely unlike
any in the original data.

Many static surface editing systems can be used to create anima-
tions from static surfaces. For example, Wires [Singh and Fiume
1998] can be used to create non-rigid animations by varying the
shape and parameters of the control curves. However, such ap-
proaches are not really suitable for editing pre-existing deforming
surfaces.

Motion Capture Editing. A great deal of research has investi-
gated how to edit and reuse human skeletal motion capture data. A
few examples include path editing [Gleicher 2001], motion signal
processing in the time domain [Bruderlin and Williams 1995], and
constraint based editing [Gleicher 1997]. While enlightening as to
the importance of the problem we address, these methods all rely
on the animation data being skeletal, and thus are not applicable to
arbitrary deforming surface editing.

Static Multiresolution Editing. Zorin et al. [1997] developed
the first multiresolution editing method for static surfaces, based on
Loop subdivision [1987]. This allowed large-scale edits to be per-
formed while preserving fine details. Subdivision based analysis,
however, is limited to meshes with semi-regular connectivity.

In contrast to subdivision schemes, mesh decimation methods start
with an irregular fine mesh and produce coarser approximating
meshes, all with irregular connectivity. Modern mesh decimation
methods are predominantly based on iterative edge contraction. Ex-
amples include the methods developed by Hoppe [1996] and Gar-
land & Heckbert [1997]. Kobbelt et al. [1998] presented a mul-
tiresolution editing and signal processing method for irregular static
meshes, using mesh decimation to build the multiresolution pyra-
mid. Guskov et al. [1999] improved upon this, with the definition of
the 2nd-order divided differences relaxation operator for arbitrary
meshes. However, since the pyramid construction in both these
methods depends heavily on the geometry, it is suitable only for
analyzing similar geometry (i.e., nearby frames in an animation).

More recent work on detail-preserving static surface editing include
using volumetric details [Botsch and Kobbelt 2003], gradient field
manipulation [Yu et al. 2004], rotationally invariant coordinates
[Sorkine et al. 2004; Lipman et al. 2005], and the volumetric graph
Laplacian [Zhou et al. 2005].

Dynamic Multiresolution Meshes. To produce a sequence of
mesh pyramids for a deforming surface, one could simply run a
standard mesh decimation algorithm on each frame. However, a se-
quence of hierarchies produced in this manner would have little or
no temporal coherence. Shamir et al. [2000] address this problem
by taking history into account when decimating the next frame in
an animation. On the other hand, Kircher & Garland [2005] com-
pute the transformation of the previous frame’s hierarchy to one
better suited to the current geometry. This has the added benefit of
yielding a compact representation of the difference between the two
hierarchies. One shortcoming of this method is that it can fairly eas-
ily get stuck in suboptimal local minima. We rectify this problem
by adding vertex teleportation.

Mesh Animation Compression. Sequences of animated mesh
geometry can be potentially extremely costly to store. Lengyel
[1999] first addressed this problem by fitting the animation to a low-
parameter motion model, and then encoding the residual. Alexa
and Müller [2000] compress the difference from the mean shape
using PCA techniques. Karni and Gotsman [Karni and Gotsman
2004] extend this method by the addition of 2nd-order linear pre-
diction encoding. Briceño et al. [2003] encode the geometry as
an image, and then apply video compression. Guskov and Kho-
dakovsky [2004] perform a wavelet transform, based on a multires-
olution mesh pyramid. Our time-varying transform can be used
with this method to improve its performance on animations with
more extreme deformations and less parametric coherence.

2

To Appear in SIGGRAPH 2006

Mk+1 Mk

v
r(v) r*(r(v))Coarse Fine

Figure 2: The vertex r(v) represents v in the next coarser level and
has the same geometric position as r∗(r(v)).

3 Time-Varying Transform

Utilizing a multiresolution approach to editing enables important
signal processing operations, such as smoothing of motion capture
noise and the enhancement of subtle details. In addition, it makes
edits applied on multiple animation frames behave sensibly in the
presence of highly deforming geometry (see §4.2). Our approach
is based on an irregular mesh analog of the Burt-Adelson pyra-
mid [1987]. Our mesh pyramid represents the mesh at decreasing
levels of detail, encoding detail differences between each subse-
quent levels.

3.1 Pyramid Scheme

We construct our mesh pyramid in a manner similar to that pro-
posed by Guskov et al. [1999]. However, our pyramid is different
in that each removed vertex does not count as a new level. Instead,
we repeatedly remove a fixed percentage (usually 50% or 75%)
of vertices, to produce a pyramid structure stratified into levels.
This is the multilevel mesh defined by Kircher & Garland [2005].
The decimation metric we use is a weighted average of the pla-
nar quadric error metric [Garland and Heckbert 1997] and vertex
quadrics [Garland and Zhou 2005] to regularize edge lengths (im-
portant for achieving meaningful signal processing results). We use
subset placement to find decimated vertex positions. Each level is a
mesh in its own right, and can be processed as such. The levels will
be denoted M0,M1, ...,Mn, where M0 is the original input mesh, and
Mn is the coarsest level constructed. Each vertex u∈Mk+1 was pro-
duced by contracting together some number of vertices at level Mk.
For each such vertex v, we call u the representative of v, and denote
it u = r(v). In addition, there is one vertex w ∈ Mk that is really
the same vertex as u. We shall denote this vertex w = r∗(u). Note
that for a general vertex x, r(r∗(x)) = x, but r∗(r(x)) 6= x necessar-
ily. In fact, for each cluster of vertices with the same representative,
exactly one will have the property that r∗(r(x)) = x. See Figure 2.

Up-sampling proceeds in a manner reminiscent of the interpolate
and relax phase of a multigrid solver. To produce a smooth subdi-
vided mesh from a coarse level Mk, we take the connectivity spec-
ified by level Mk−1 and set each vertex v ∈ Mk−1 to the position
of r(v) in Mk. We then generate interpolated positions for the ver-
tices of Mk−1 by performing a fixed number of Gauss-Seidel iter-
ations using the 2nd-order divided differences relaxation operator
[Guskov et al. 1999], while holding fixed every vertex x ∈ Mk−1
satisfying r∗(r(x)) = x. Following that, we perform a small number
of unconstrained Jacobi iterations, with the same relaxation opera-
tor, to relax the mesh into a smooth approximation of Mk, with the
connectivity of Mk−1. We shall denote the subdivision of Mk by this
process as σ(Mk). We use Gauss-Seidel iterations during interpola-
tion for faster convergence, and Jacobi iterations during smoothing
to avoid bias. In our experiments, we have found 15 Gauss-Seidel
iterations with a step size of 1.0 to be sufficient for the interpolation
phase. The user can vary the number of Jacobi iterations for the

smoothing phase, but we generally use 2, with a step size of 0.5,
which we have found to work best in our experiments.

Having computed σ(Mk), we compute detail vectors by taking the
difference between each vertex in Mk−1 and the corresponding ver-
tex in σ(Mk). The detail vectors are represented relative to a local
frame computed for each vertex of σ(Mk). These local frames are
very important in our editing application, and we will denote the
local frame of a vertex u by Fu, a 3×3 rotation matrix taking lo-
cal vectors to global ones. Local frames for Mk−1 are computed
from σ(Mk) by using, for each vertex, one of the tangent vectors of
the Loop subdivision surface [Loop 1987] defined by the 1-ring of
that vertex, and the average normal of the triangles in that 1-ring.
We found this to be more stable than using both Loop surface tan-
gent vectors to define the normal. Also, for editing applications we
need to keep track of, at all hierarchy levels, the local frames of
the unedited geometry. This canonical frame for vertex u will be
denoted Fc

u.

The original surface can be reconstructed from the coarsest level
vertex positions and all the detail vectors by again using the mesh
pyramid. Starting from Mn, we produce σ(Mn) and add the detail
vectors for level n− 1, to obtain Mn−1. This process repeats until
we obtain M0.

To deal with boundaries, we add boundary constraint quadrics [Gar-
land and Heckbert 1997] to the decimation metric, ensuring that
boundaries are well represented on all levels of the mesh pyra-
mid. Then, during the interpolation phase of subdivision, we use
an inverse edge-length weighted Laplacian operator, restricted to
the boundary, to make sure that interpolated vertex positions lie on
the boundary. The smoothing phase is unaltered. We have also
found that triangles with very bad aspect ratio may appear on mesh
boundaries, causing numerical instabilities. To fix this, we simply
ignore edges attached to such triangles when computing relaxation
coefficients, which is the same method Guskov et al. [1999] used
to deal with non-manifold edges.

It is worth noting that this pyramid scheme is not a true wavelet
transform due to the presence of oversampling. The oversampling
is important for editing and signal processing applications. How-
ever, it can easily be eliminated, if desired, by skipping all smooth-
ing iterations and by removing detail vectors for vertices where
x = r∗(r(x)), since these details vectors would be 0.

3.2 Adaptive Transform

The mesh pyramid described above can be used for signal process-
ing and multiresolution editing on the original input mesh, just as
in Guskov et al. [1999]. However, our goal is to perform such op-
erations on a highly deforming surface, such as a cloth animation.
Since the pyramid was constructed from a particular input geome-
try, it is useful only for signal processing of surfaces whose geome-
try closely resembles that of the original input. An example of how
this can fail is shown on a man to horse morph in Figure 3. In that
figure, we are doubling the length of the detail vectors correspond-
ing to the middle level of the hierarchy. However, the frequency
content of the man is very different from that of the horse. A static
frequency analysis (Figure 3b) thus yields obviously incorrect re-
sults. Even updating the relaxation coefficients alone (Figure 3c)
does not give the right behavior. Only through updating both the
relaxation coefficients and the hierarchy (Figure 3d) do we achieve
the desired result. Note that this situation doesn’t arise in the regu-
lar image setting, because the signal being processed (pixel value)
does not affect the construction of the image pyramid. In the ir-
regular mesh setting, however, the geometry of the surface has a
significant influence on the constructed mesh pyramid.

3

To Appear in SIGGRAPH 2006

(a) (b) (c) (d)

Figure 3: (a) A nonlinear morph. (b)-(d) Middle frequencies en-
hanced. Multiresolution analysis from first frame breaks down on
later frames (b). Even updating relaxation coefficients (c) doesn’t
fix the problem. (d) Our result.

To apply multiresolution techniques to a deforming surface we can
simply build a new hierarchy for each frame. However, greedy
mesh decimation is an unstable process: small changes in the in-
put geometry can potentially produce drastic changes in the output
hierarchy. Moreover, a pyramid scheme is only an approximation
of frequency decomposition, so it is important to maintain consis-
tency of the approximation from one frame to the next. Thus, we
make use of the hierarchy adaptation method presented by Kircher
and Garland [2005]. This yields a sequence of multilevel meshes
with a high degree of temporal coherence. If instead, we were to
simply build a completely new pyramid on each frame, without re-
gard to previous frames, the signal processing and editing results
would be extremely noisy.

Since the relaxation operator we use performs best on manifolds,
we enforce topological preservation during both initial pyramid
construction and subsequent hierarchy updating.

3.3 Basis Smoothing

Performing hierarchy adaptation, rather than building a new hierar-
chy from scratch, greatly increases the temporal coherence of the
mesh pyramid sequence. However, any change to the hierarchy has
the potential to cause a pop in the signal processed results. This is
because changes to the hierarchy are combinatorial in nature. For
example, an edge flip in one of the coarser levels may potentially
cause an abrupt change in the relaxed position of either involved
vertex. Such changes in the relaxed vertex positions cause corre-
sponding changes in the direction and magnitude of the detail vec-
tors. If one is reconstructing the original surface, then such changes
are immaterial. However, when performing signal processing, we
may scale the detail vectors, and if their directions have changed,
their endpoints will shift. Visually, this manifests itself as a small
“pop” in the surface.

To alleviate these abrupt position corrections, we would like to
“smooth out” the hierarchy changes, so that they occur over some
time interval, rather than suddenly. However, since the changes to
the hierarchy are combinatorial, this is problematic. Our solution
is to essentially let the various mesh pyramids nearby the current
frame “vote” on the result of a particular signal processing oper-
ation. When processing frame i, we take all the pyramids from
frames j within a certain window around frame i, and signal pro-
cess the geometry of frame i with each of them. We then average
the resulting vertex positions (See Figure 4). It is vital to note,
however, that we are not averaging the result of applying pyramid
j to geometry j, for j 6= i, and averaging with the other frames in
the window. Doing that would smooth out the original geometry
motion, which is quite undesirable. Instead, we are only diffusing
the effect of hierarchy changes, on geometry from a single frame

Figure 4: Basis smoothing processes a single frame i with all nearby
mesh pyramids, the results are then combined to produce tempo-
rally coherent output.

i. In essence, the space we are smoothing over is the space of pos-
sible mesh pyramids (hence the name basis smoothing). We are
not smoothing over time. Applying basis smoothing on a sequence
with an identity filter reproduces the original sequence exactly (up
to numerical precision).

There is, of course, a performance impact from using basis smooth-
ing. Combining 10 different bases will increase processing time
by approximately a factor of 10. However, we greatly improve
the speed of basis smoothing by breaking the sequence into blocks
(§3.4). In addition, during interactive editing, basis smoothing is
not performed, to give the user the quickest feedback. The user can
request a basis smoothed preview at any time.

3.4 Blockification

Although we can compute a new multiresolution pyramid for each
frame of the animation, this is by no means necessary. For smoothly
deforming meshes, the same pyramid is likely to be well suited for
an entire contiguous subsequence of the animation. Thus, we can
delay changes to the hierarchy until they exceed some threshold.
This breaks the sequence into blocks, each of which is represented
by a different mesh pyramid. We pick blocks based on the total
quadric error of the hierarchy. If the improved hierarchy is better
suited to the geometry than the current one by more than some small
threshold we create a new block.

Blockification greatly accelerates basis smoothing, since smoothing
need only be performed near block boundaries. For example, on the
collapsing horse sequence (Figure 11), blockified basis smoothing
with a window consisting of 19 frames was performed using an
average of only 3.5 bases. On sequences with less drastic deforma-
tion, the speedup is even greater. Blockified basis smoothing with a
19 frame window on the motion captured cloth sequence (Figure 1)
used only 1.7 bases per frame (more than 11 times faster than reg-
ular basis smoothing). We typically use a threshold of nearly zero
(1×10−6), and block sizes are typically on the order of 10 frames
per block.

3.5 Vertex Teleportation

Kircher & Garland’s [2005] hierarchy improvement algorithm is
useful for generating a sequence of mesh pyramids, as well as for
encoding the transformation from one hierarchy to the next. How-
ever, using only local changes (i.e., swaps) without any backtrack-
ing (as in the Kernighan-Lin algorithm [1970]) means that the al-
gorithm can fairly easily get stuck in local minima.

We solve this by introducing a vertex teleportation operation, which
is built from a special sequence of swap operations (each swap in

4

To Appear in SIGGRAPH 2006

Figure 5: Our editing interface. Top: Direct manipulation (left, middle) and multiresolution embossing (right). Bottom: Attaching a sail to a
ship (left, middle) and signal processing (right).

the special sequence may not decrease the total error, but the se-
quence as a whole will). Essentially, we merge two clusters together
into one, and simultaneously split a single cluster somewhere else
into two clusters. Thus the total number of clusters (i.e., approxima-
tion vertices) remains the same. The effect is the same as removing
one vertex in the approximation, at one location, and introducing
a new vertex somewhere else in the approximation. This is essen-
tially the same strategy that has successfully been used to improve
other iterative minimization schemes [Cohen-Steiner et al. 2004].
To reduce the number of splits that must be considered, we exam-
ine only clusters with pinch vertices in them [Kircher and Garland
2005]. To preserve topology during vertex teleportation, we use
both the homeomorphic swap validity rule [Kircher and Garland
2005] and the link condition for edge contraction [Dey et al. 1999].

4 Multiresolution Editing

Constructing the time-varying multiresolution transform for a given
animation sequence is an entirely automatic preprocessing step.
Once that is complete, the user can efficiently perform interactive
signal processing and editing of that sequence. See Figure 5 for
examples of interactive editing sessions. We view both signal pro-
cessing and editing as the application of filters to the detail vector
representation of the surface. User edits are stored in a special fil-
ter, which can be applied to any frame of the animation to produce a
corresponding edit. Edits can also be weighted by a temporal scal-
ing function, which is an arbitrary real valued function of time that
governs the strength of an edit on each frame of the animation.

4.1 Direct Manipulation

The most basic edit that can be performed with our system is drag-
ging a vertex to a new position. Naturally, coarser level vertices
affect larger areas. An example of direct manipulation is shown in

the top left portion of Figure 5. The user lengthens the ear of the
collapsing horse by dragging it.

A common approach in static multiresolution editing is to asso-
ciate edits with some coarse scale vertex. However, in our case
the mesh pyramid may change from frame to frame. Thus, coarse-
scale vertex position edits cannot be associated with a coarse vertex,
since there is no single corresponding coarse vertex for all frames.
Instead, all edits that would normally affect the detail vectors of
coarse level vertices are stored at the finest level (whose connectiv-
ity does not change).

When the user moves a vertex u at some level k of the current hier-
archy, the edit vector is “replicated” and associated with all vertices
of M0 that are represented by u. When the resulting set of edit repli-
cators are applied to some other hierarchy, they are propagated up
the hierarchy to level k and averaged together. By the nature of
the multiresolution transform, this tells us how the coarse vertices
should move. Since the hierarchy is not necessarily the same as the
original, more than one vertex of level k may now be affected by the
edit. See Figure 6 for a schematic depiction of how edit replicators
work.

We take care to make edit replicators from different edits be in-
dependent of each other. This makes applying the edit filter sim-
pler, since edits need not be applied in the order the user specified
them. It also allows edits from different frames to be combined in
a sensible way. Given an edit vector e represented in global coor-
dinates and associated with a vertex u ∈ Mk, replication proceeds
as follows. Let e′ = Fc

uF−1
u e be the global representation of e inde-

pendent of all other edits. Now, let V = (r−1)k({u}) be the set of
vertices in M0 represented by u. For each v ∈V , let ev = (Fc

v)
−1e′.

This set {ev|v ∈V} is the set of edit replicators associated with this
edit, represented in the local canonical frames of the finest level ge-
ometry. These edit replicators, along with the level number k are
sufficient to reconstruct the edit, and apply the edit to other frames,
even if they have different hierarchies.

Given a set of base vertices V , a set of edit replicators {ev|v ∈ V},

5

To Appear in SIGGRAPH 2006

Figure 6: The thin polyline represents coarse surface manipulated
by user. The thick curved line represents finest level surface. Top,
left to right: Original surface. User drags a vertex. Edit is replicated
and stored at finest level. Bottom, left to right: Original surface on a
new frame. Edit replicators move with finest level surface. Vertices
at coarse level are moved according to edit replicators.

and a level number k, edit application proceeds as follows. Let U =
rk(V) be the set of vertices at level k representing those in V . For
each u ∈ U , let W = (r−1)k({u}) and compute the global average
edit vector a = (∑w∈W∩V Fc

wew)/|W |. Finally, for each u ∈U , add
(Fc

u)
−1a to the detail vector associated with u.

As described, different edits have cumulative semantics (meaning
that, if they affect the same vertex, their effects add up). We can
also make edits from the same animation frame have averaging se-
mantics by treating all the edit replicators affecting level k of the
same animation frame as one big set of edit replicators. Thus, if
two spatially nearby edits originally affected different coarse ver-
tices, but on a new animation frame they affect the same vertex,
then the total effect on that vertex will be a weighted average of the
two edits. We have found that this gives more intuitive user control.
Edits from different frames still have cumulative semantics.

Edit replicators are versatile, and need not be used only for trans-
porting single-vertex style edits. By specifying the edit replicators
more directly, we can provide a variety of useful tools. For exam-
ple, we can provide a direct manipulation brush by laying a brush
texture over a portion of the base surface, and computing edit repli-
cators for each vertex of M0 that lies within the textured region. The
edit replicator magnitudes are determined by texture lookup. Then,
the edit replicators can be applied to any level desired. This allows
the user to “pull” multiple vertices at once.

4.2 Multiresolution Embossing

Our edit replicators can also be used to perform multiresolution em-
bossing, which is much more effective than single resolution em-
bossing. This is a multi-stage process. First, edit replicators are
computed exactly as in the direct manipulation brush case, and are
applied to a very coarse level of the mesh pyramid. The whole
multiresolution transform is then computed, to determine the effect
of the low-res embossing on the finest level geometry. Then, this
new geometry is compared against the desired embossing shape,
and difference vectors are computed. These are converted to edit
replicators, and applied to the next finer level of the mesh pyramid.
Again the transform is computed to obtain the refined finest level
geometry. This process repeats until the finest level is reached. The
result is a multiresolution set of edit replicators that, when applied
to any frame of the animation, produces a nice embossing of the
surface, deformed appropriately for the new geometry. Embossing
effects can be scaled or thresholded by temporal scaling functions,
and can even have an animated source texture.

Figure 7 shows the difference between multiresolution and single
resolution embossing. In that figure, a piece of motion-captured
cloth data has been embossed with the word “HI” while the cloth is
flat. When the cloth bends, the single resolution embossing (applied
at the finest level) breaks down, whereas the multiresolution result
behaves in an aesthetically pleasing manner.

4.3 Constraints

Constraint edits allow the user to specify that a particular part of
the surface should be in exactly a certain location at a certain an-
imation frame (or multiple frames). This is useful for fixing up
errors in motion captured cloth at vertices that were supposed to be
locked in place (similar to the “foot skate” problem of skeletal mo-
tion capture), or attaching cloth to objects it wasn’t attached to in
the original simulation or motion capture environment.

Constraints are represented in global absolute coordinates. Each
constraint c is associated with a single vertex v of the finest level
mesh, and can be either hard (vertex moves exactly to the speci-
fied location) or soft (vertex is a weighted average of constrained
and unconstrained locations). Also associated with c is the coarsest
level k at which the constraint will have any affect. All vertices up
the hierarchy from v to rk(v), inclusive, are affected by c. If two
or more constraints end up affecting the same coarse level vertex,
their affects are averaged at that level. Choosing different k will
change how localized the effect of the constraint is. Choosing the
coarsest level will give the most “global” motion of the surface to
satisfy the constraint. Choosing the finest level will move only v to
the constraint location, creating a spike effect (see top of Figure 8).

Unlike global signal processing and edit replicators, constraints do
not affect detail vectors directly. Instead, they are applied during the
reconstruction phase. A hard constraint affecting vertex u of level k
will cause that vertex to be moved exactly to the constraint position,
ignoring the detail vector associated with that vertex. Soft con-
straints are the same, except they first compute the unconstrained
location, using the detail vector, and then combine it with the con-
straint location.

Figure 8 shows an example of using constraints to modify a mo-
tion captured cloth sequence. In the original sequence, only the top
two corners were pinned, allowing the bottom to flap freely. In our
edited result, all four corners are pinned, yet the surface still looks
natural.

4.4 Geometric Signal Processing

Motion captured cloth can have a great deal of noise, which may
need to be removed. In addition, an artist may wish to enhance, or
downplay, certain folds and wrinkles in the cloth. We provide sig-
nal processing tools as a way to accomplish these tasks. We apply
frequency band filters, where each mesh pyramid level is a separate
band, by scaling the detail vectors and then reconstructing the sur-
face. As with all pyramid methods, the levels of the hierarchy are
not exactly frequency bands, but they behave in a similar manner.
By scaling the detail vectors, we can achieve all the usual signal
processing effects, such as smoothing, band-pass filtering, and en-
hancement.

6

To Appear in SIGGRAPH 2006

Figure 7: Embossing motion captured cloth. Notice that the multiresolution result (left) is free from the “crumpling” artifacts present in the
single resolution result (right).

5 Adaptive Wavelet Compression

It may seem that constructing our time-varying multiresolution
transform will seriously inflate the size of the animation data. How-
ever, with a few modifications, the transform can actually help us
compress the animation.

The wavelet based compression method due to Guskov and Kho-
dakovsky [2004] requires that every frame of the animation se-
quence be well represented by a single multiresolution hierarchy.
For highly deforming surfaces, such as morphs and cloth, this re-
quirement is not met. By using our time-varying transform, we can
achieve better normal reconstruction at low bit-rates, even though
the total geometric RMS error does not necessarily decrease. See
Figure 9 for an example.

First, we segment the sequence into blocks (§3.4). Each block will
have its own wavelet basis, which requires both a multiresolution
hierarchy and a set of relaxation operator coefficients. The hier-
archy and relaxer coefficients for the first block are both implicitly
defined by the geometry of the first frame, which can be compressed
by a static mesh compression scheme, or left uncompressed.

Hierarchies for subsequent blocks are encoded using a more com-
pact version of the swap representation [Kircher and Garland 2005].
The relaxation operator coefficients for each block will be com-
puted from the geometry of the first frame of the block. However,
to avoid quality degradation, the first frame of each block needs to
be encoded at a much higher bitrate (as much as an order of mag-
nitude higher, for very low bitrate encodings) than the rest of the
block.

In order to have a true wavelet transform, there must be no over-
sampling. Thus when using our transform for compression we do
not perform the smoothing phase of the subdivision (only the inter-
polation phase), as described in §3.1. Also, to achieve better rates,
we use the anisotropic version of the 2nd-order divided differences
relaxation operator [Guskov and Khodakovsky 2004].

Figure 9 shows a comparison between our implementation of
Guskov & Khodakovsky’s wavelet compression method and our
improved version using adaptive bases with blockification. The
sequence being compressed is the man to horse morph shown in
Figure 3. Both methods use an average of only 1 bit per vertex
per frame (decreasing the animation from 41MB to 1.2MB), and
use P-frames for all possible frames (the beginning of blocks in

Figure 8: Top: Constraints at fine levels (left) have very local ef-
fects. Higher level constraints (right) have more global effects. Bot-
tom: Before and after adding constraints at all four cloth corners.

our adaptive method must be I-frames). The single, non-adaptive
wavelet basis is not as suitable for representing the last frame, re-
sulting in noticeable noise in the reconstruction. Our result is of
higher visual quality, despite having the detail vectors actually en-
coded at only 0.7 bits per vertex per frame, to compensate for the
extra swap information and geometry that must be encoded for the
basis transitions. The overall RMS errors for the two methods are
essentially the same.

6 Results

We will now demonstrate some of the results that can be achieved
with our dynamic surface editing system. We begin with a few em-
bossing examples on a piece of cloth obtained through motion cap-
ture and then subdivided with two levels of Loop subdivision. Fig-
ure 7 shows both multiresolution and single resolution embossing
of the word “HI” into the cloth. Figure 1 shows a multiresolution
embossing of a human face into the cloth. Note how the embossed
result bends naturally with the bending of the cloth. These exam-

7

To Appear in SIGGRAPH 2006

(a) Single wavelet basis (b) Adaptive wavelet bases

Figure 9: Compressing the man-to-horse morph shown in Figure
3 at an average rate of 1.0 bits per vertex per frame. The static
wavelet basis produces noticeable noise on the side of the head that
is corrected by our adaptive basis.

Figure 10: A simulated rubber sheet is stretched, released, and al-
lowed to hang flat. Afterwards it is embossed with the word HI.

ples highlight a useful aspect of dynamic surface editing: the ability
to create non-physical cloth results, from physical data or phys-
ically based simulations, that still look natural. Moreover, these
simple results can be created with only a few mouse clicks on the
part of the user.

A more complicated edit is shown in Figure 11. The original se-
quence is of a horse collapsing as if it were made of rubber. In just
a few minutes, the user has edited the sequence so that the horse
becomes a camel-horse hybrid, complete with hump, and so that its
face shows an expression of extreme surprise when it realizes it has
no skeleton. Notice the natural way that the hump folds over when
it collapses. Remember, the hump was never part of the geometry
during the original simulation run. Preprocessing time for the 16K
triangle, 52 frame collapsing horse was about 8 minutes on a 3 GHz
Intel Xeon processor.

Figure 12 shows another complex example. We have taken the sub-
divided, motion captured cloth data (Figure 1) and attached it to a
ship to make a sail. Signal processing was used to make the cloth
appear heavier, and less mobile, and a brushed direct manipulation
edit was applied to make the sail bow out as if in a strong wind. Pre-
processing time for the 16K triangle, 450 frame subdivided cloth
was about 70 minutes. Remember, preprocessing time is a one-
time cost for each sequence. What matters most is total user editing
time, which was less than six minutes.

An even more complicated example is shown in Figure 13. Here, a
cape that was simulated on a cow is edited to fit a galloping horse.
Before editing, the cape intersects the horse in multiple locations,
and it doesn’t move with the galloping motion of the horse. By
attaching the cape to the shoulders of the horse, using time-varying
constraints, the cape now fits the horse snugly, and moves with the

galloping motion. The inter-penetration of the tail with the cape
was fixed with a few embossing and direct manipulation edits, with
a temporal scaling function synched with the rise and fall of the
horse’s tail. Our first, rough edit is shown in the upper right of the
figure. We refined the edit by making the cloth above the horse’s
back follow the horse’s shape more closely, and move with the rise
and fall of the horse’s back. Our system makes it easy to perform
this kind of iterative design process.

6.1 Discussion

While our system is effective and robust, we have found that there
are some extreme situations that are not ideally handled. If an edit
on a relatively flat region of the animation is being transported
across a region of extreme deformation, to another relatively flat
region, the two flat regions will not have the same hierarchy, even
though their geometry may be almost the same. This can lead to mi-
nor, but noticeable, artifacts, since the edit replicators can approx-
imate the edit on the new hierarchy, but not reproduce it exactly.
This is not usually apparent, but can be seen in Figure 10. In such
situations, the artist may wish to do the edit twice, once on each side
of the extremely deformed region, and have the two edits blend to-
gether at some point (probably in the deformed region). Figure 10
does, however, also show that our system correctly handles large
tangential stretching and shearing of the surface.

Another potential limitation of the system is the somewhat expen-
sive preprocessing step. The dominant cost during hierarchy adap-
tation is in fact the vertex teleportation, which allows the algorithm
to escape local minima. However, for many deforming surfaces
vertex teleportation may be safely switched off. Specifically, those
animations without too much parametric distortion—i.e., tangential
stretching/compression—do not require teleportation. In this case,
preprocessing time is reduced by a factor of 2 or more.

7 Conclusion and Future Work

We have presented a novel method for editing arbitrarily deforming
surfaces. This method allows a user to take an existing animation
sequence and modify it so that it can be used for a different pur-
pose or so that it better fulfills its original purpose. The user can
directly manipulate the surface, emboss it, and attach it to moving
objects not present in the original environment. Through our novel
time-varying multiresolution transform, the edits can be propagated
naturally to any other frame of the animation. A system like this can
go a long way toward easing the burden currently placed on artists
and designers who must repeatedly “tweak” simulation conditions
to get the result they desire, or go in by hand and manually apply
edits to multiple frames. Deforming surface editing is also likely
to become even more important as cloth motion capture technol-
ogy develops. While many of our best examples are cloth data, we
stress that our method is not limited to cloth.

While our system enables a wide variety of edits, one interesting
possibility to extend it even further is signal processing in the tem-
poral domain (being able to scale different frequencies of the mo-
tion itself). Also, though multiple translational edits can be com-
bined to produce a rotation, it would be useful to have an explicitly
rotational kind of edit. In fact, using our system as a foundation, a
great variety of editing tools, like procedural edit filters and other
“plugins,” could be created easily. Also, if a purely cloth-oriented
system is desired, it may be fruitful to incorporate actual knowledge
of cloth dynamics.

8

To Appear in SIGGRAPH 2006

Figure 11: Top: The original collapsing horse. Bottom: A very surprised collapsing camel-horse hybrid. Note the natural way in which the
hump folds over as the geometry collapses.

Figure 12: Editing a piece of motion captured cloth (Figure 1) to make a ship’s sail. Our system makes it easy to reuse deforming surface
data.

Figure 13: Top Left: A simulated cape on a cow. Top Middle: The cape doesn’t fit the horse, but after some quick editing (Top Right) it does.
Not satisfied with the fit, we make a few more edits. Bottom: Three frames of the final editing results.

9

To Appear in SIGGRAPH 2006

Acknowledgements Robert Sumner and Jovan Popović pro-
vided the galloping and collapsing horse animations. The man-
to-horse correspondence data is courtesy of Alla Sheffer, and
Youngihn Kho generated the morph sequence. Finally, Ryan White
and David Forsyth generously provided some of their motion cap-
tured cloth data.

References

ALEXA, M., AND MÜLLER, W. 2000. Representing animations
by principal components. In Proc. Eurographics.

BARAFF, D., WITKIN, A., AND KASS, M. 2003. Untangling
cloth. ACM Trans. Graph. 22, 3, 862–870.

BOTSCH, M., AND KOBBELT, L. 2003. Multiresolution surface
representation based on displacement volumes. Comput. Graph.
Forum 22, 3, 483–492.

BRIDSON, R., MARINO, S., AND FEDKIW, R. 2003. Simulation
of clothing with folds and wrinkles. In SCA 2003, Eurographics
Association, Aire-la-Ville, Switzerland, Switzerland, 28–36.

BRUDERLIN, A., AND WILLIAMS, L. 1995. Motion signal pro-
cessing. In SIGGRAPH 1995, ACM Press, New York, NY, USA,
97–104.

BURT, P. J., AND ADELSON, E. H. 1987. The laplacian pyramid as
a compact image code. IEEE Trans. on Communications, 671–
679.

CHOI, K.-J., AND KO, H.-S. 2002. Stable but responsive cloth. In
SIGGRAPH 2002, ACM Press, New York, NY, USA, 604–611.

COHEN-STEINER, D., ALLIEZ, P., AND DESBRUN, M. 2004.
Variational shape approximation. ACM Trans. Graph. 23, 3,
905–914.

DEY, T. K., EDELSBRUNNER, H., GUHA, S., AND NEKHAYEV,
D. V. 1999. Topology preserving edge contraction. Publ. Inst.
Math. (Beograd) (N.S.) 66, 23–45.

GARLAND, M., AND HECKBERT, P. S. 1997. Surface simplifica-
tion using quadric error metrics. In SIGGRAPH 1997, ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA,
209–216.

GARLAND, M., AND ZHOU, Y. 2005. Quadric-based simplifica-
tion in any dimension. ACM Trans. Graph. 24, 2, 209–239.

GLEICHER, M. 1997. Motion editing with spacetime constraints.
In Symposium on Interactive 3D Graphics, ACM Press, New
York, NY, USA, 139–ff.

GLEICHER, M. 2001. Motion path editing. In Symposium on Inter-
active 3D Graphics, ACM Press, New York, NY, USA, 195–202.

GUSKOV, I., AND KHODAKOVSKY, A. 2004. Wavelet compres-
sion of parametrically coherent mesh sequences. In SCA 2004,
ACM Press, New York, NY, USA, 183–192.

GUSKOV, I., SWELDENS, W., AND SCHRÖDER, P. 1999. Mul-
tiresolution signal processing for meshes. In SIGGRAPH 1999,
ACM Press/Addison-Wesley Publishing Co., New York, NY,
USA, 325–334.

GUSKOV, I., KLIBANOV, S., AND BRYANT, B. 2003. Trackable
surfaces. In SCA 2003, Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, 251–257.

HOPPE, H. 1996. Progressive meshes. In SIGGRAPH 1996, ACM
Press, New York, NY, USA, 99–108.

JAMES, D. L., AND TWIGG, C. D. 2005. Skinning mesh anima-
tions. ACM Trans. Graph. 24, 3, 399–407.

KARNI, Z., AND GOTSMAN, C. 2004. Compression of soft-body
animation sequences. Computers & Graphics 28, 1, 25–34.

KERNIGHAN, B. W., AND LIN, S. 1970. An efficient heuristic for
partitioning graphs. Bell Systems Tech. J. 49 (Feb.), 291–308.

KIRCHER, S., AND GARLAND, M. 2005. Progressive multireso-
lution meshes for deforming surfaces. In SCA 2005, ACM Press,
New York, NY, USA, 191–200.

KOBBELT, L., CAMPAGNA, S., VORSATZ, J., AND SEIDEL, H.-P.
1998. Interactive multi-resolution modeling on arbitrary meshes.
In SIGGRAPH 1998, ACM Press, New York, NY, USA, 105–
114.

LENGYEL, J. E. 1999. Compression of time-dependent geome-
try. In Symposium on Interactive 3D graphics, ACM Press, New
York, NY, USA, 89–95.

LIPMAN, Y., SORKINE, O., LEVIN, D., AND COHEN-OR, D.
2005. Linear rotation-invariant coordinates for meshes. ACM
Trans. Graph. 24, 3, 479–487.

LOOP, C. 1987. Smooth Subdivision Smfaces Based on Triangles.
Master’s thesis, Department of Mathematics, University of Utah.

NO, H. M. B., SANDER, P. V., MCMILLAN, L., GORTLER, S.,
AND HOPPE, H. 2003. Geometry videos: a new representation
for 3d animations. In SCA 2003, 136–146.

SCHOLZ, V., STICH, T., KECKEISEN, M., WACKER, M., AND
MAGNOR, M. 2005. Garment motion capture using color-
coded patterns. Computer Graphics Forum (Proc. Eurographics
EG’05) 24, 3 (Aug.), 439–448.

SHAMIR, A., PASCUCCI, V., AND BAJAJ, C. 2000. Multi-
resolution dynamic meshes with arbitrary deformations. In Proc.
Visualization ’00, 423–430.

SINGH, K., AND FIUME, E. 1998. Wires: a geometric deformation
technique. In SIGGRAPH 1998, ACM Press, New York, NY,
USA, 405–414.

SORKINE, O., COHEN-OR, D., LIPMAN, Y., ALEXA, M.,
RÖSSL, C., AND SEIDEL, H.-P. 2004. Laplacian surface edit-
ing. In SGP 2004, ACM Press, New York, NY, USA, 175–184.

SUMNER, R. W., ZWICKER, M., GOTSMAN, C., AND POPOVIĆ,
J. 2005. Mesh-based inverse kinematics. ACM Trans. Graph.
24, 3, 488–495.

WHITE, R., LOBAY, A., AND FORSYTH, D., 2005.
Cloth capture. Technical Report No UCB/CSD-5-
1387, EECS Department, U. of California, 2005.
http://www.cs.berkeley.edu/˜ryanw/research/tr cloth.html.

YU, Y., ZHOU, K., XU, D., SHI, X., BAO, H., GUO, B., AND
SHUM, H.-Y. 2004. Mesh editing with poisson-based gradient
field manipulation. ACM Trans. Graph. 23, 3, 644–651.

ZHOU, K., HUANG, J., SNYDER, J., LIU, X., BAO, H., GUO, B.,
AND SHUM, H.-Y. 2005. Large mesh deformation using the
volumetric graph laplacian. ACM Trans. Graph. 24, 3, 496–503.

ZORIN, D., SCHRÖDER, P., AND SWELDENS, W. 1997. Interac-
tive multiresolution mesh editing. In SIGGRAPH 1997, ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA,
259–268.

10

