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ABSTRACT
Sparse matrix-vector multiplication (SpMV) is of singular impor-
tance in sparse linear algebra. In contrast to the uniform regularity
of dense linear algebra, sparse operations encounter a broad spec-
trum of matrices ranging from the regular to the highly irregular.
Harnessing the tremendous potential of throughput-oriented pro-
cessors for sparse operations requires that we expose substantial
fine-grained parallelism and impose sufficient regularity on execu-
tion paths and memory access patterns. We explore SpMV meth-
ods that are well-suited to throughput-oriented architectures like
the GPU and which exploit several common sparsity classes. The
techniques we propose are efficient, successfully utilizing large per-
centages of peak bandwidth. Furthermore, they deliver excellent
total throughput, averaging 16 GFLOP/s and 10 GFLOP/s in dou-
ble precision for structured grid and unstructured mesh matrices,
respectively, on a GeForce GTX 285. This is roughly 2.8 times the
throughput previously achieved on Cell BE and more than 10 times
that of a quad-core Intel Clovertown system.

1. INTRODUCTION
Sparse matrix structures arise in numerous computational dis-

ciplines, and as a result, methods for efficiently processing them
are often critical to the performance of many applications. Sparse
matrix-vector multiplication (SpMV) operations have proven to be
of particular importance in computational science. They repre-
sent the dominant cost in many iterative methods for solving large-
scale linear systems and eigenvalue problems which arise in a wide
variety of scientific and engineering applications. The remain-
ing part of these iterative methods (e.g., the conjugate gradient
method [19]), typically reduce to dense linear algebra operations
that are readily handled by optimized BLAS [14] and LAPACK [1]
implementations.

Modern NVIDIA GPUs are throughput-oriented manycore pro-
cessors that offer very high peak computational throughput. Real-
izing this potential requires exposing large amounts of fine-grained
parallelism and structuring computations to exhibit sufficient reg-
ularity of execution paths and memory access patterns. Recently,
Volkov and Demmel [21] and Barrachina et al. [2] have demon-
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strated how to achieve significant percentages of peak floating
point throughput and bandwidth on dense matrix operations. These
achievements are due, in part, to the regular access patterns of dense
matrix operations. In contrast, sparse matrix operations must cope
with various forms of irregularity present in the underlying matrix
representation.

In this paper, we explore the design of efficient SpMV kernels
for throughput-oriented processors like the GPU. We implement
these kernels in CUDA [15, 16] and analyze their performance on
the GeForce GTX 285 GPU. Sparse matrices arising in different
problems can exhibit a broad spectrum of regularity. We consider
data representations and implementation techniques that span this
spectrum, from highly regular diagonal matrices to completely un-
structured matrices with highly varying row lengths.

Optimizing SpMV for throughput-oriented manycore processors
is qualitatively different than SpMV on latency-oriented multi-
cores. Whereas a multicore SpMV kernel needs to develop 4 or
perhaps 8 threads of execution, a manycore implementation must
distribute work among thousands or tens of thousands of threads.
Manycore processors will often demand a high degree of fine-
grained parallelism because, instead of using large sophisticated
caches to avoid memory latency, they use hardware multithreading
to hide the latency of memory accesses. This distinction implies
that parallel decomposition strategies that suffice for multicore pro-
cessors may fail to expose the necessary level of parallelism in a
manycore setting. Furthermore, as the parallel granularity is re-
fined, the impact of thread workload imbalances becomes a sig-
nificant concern. In contrast, multicore implementations will tend
to “average out” small scale irregularities by processing many ele-
ments per thread.

Despite the irregularity of the SpMV computation, we demon-
strate that it can be mapped quite successfully onto the fine-grained
parallel architecture employed by the GPU. For unstructured finite-
element matrices, we measure performance of roughly 10 GFLOP/s
in double precision and around 15 GFLOP/s in single precision.
Moreover, these kernels achieve high bandwidth utilization, of-
ten in excess of 100 GByte/s without caching and 140 GByte/s
with caching enabled. These figures correspond, respectively, to
63% and 88% of the theoretical peak DRAM bandwidth of 159.0
GByte/s. Harnessing a large portion of peak bandwidth demon-
strates that these kernels are highly efficient on the inherently
bandwidth-limited SpMV computation.

2. TARGET PLATFORM
Our SpMV kernels are designed to be run on throughput-oriented

architectures in general and GPUs supporting the CUDA parallel
computing architecture [15, 16] in particular. Broadly speaking, we
assume that throughput-oriented processors will provide (1) mas-
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Figure 1: Effect of stride on achieved bandwidth in saxpy and
daxpy kernels for computing y← ax+ y.

sive hardware multithreading, (2) some form of SIMD thread exe-
cution, and (3) vectorized or coalesced load/store operations.

Current NVIDIA GPUs support up to 30K co-resident parallel
threads, and a blocked SPMD (Single Program Multiple Data) pro-
gramming model. A single parallel program, or kernel, is executed
across a collection of parallel threads. These threads are orga-
nized into blocks which are the granularity at which threads can
share on-chip low-latency memory and synchronize with hardware
barrier instructions. Thread creation, scheduling, and management
is performed entirely in hardware. Since these processors rely on
hardware multithreading, rather than caches, to hide the latency of
memory accesses, a program must expose substantial fine-grained
parallelism to fully utilize the processor.

The GPU employs a SIMT (Single Instruction Multiple Thread)
architecture [15, 16] in which threads are executed in groups of 32
called warps. A warp executes a single instruction at a time across
all its threads. The threads of a warp are free to follow their own
execution path and all such execution divergence is handled auto-
matically in hardware. However, it is substantially more efficient
for threads of a warp to follow the same execution path for the bulk
of the computation.

The threads of a warp are also free to use arbitrary addresses
when accessing off-chip memory with load/store operations. Ac-
cessing scattered locations results in memory divergence and re-
quires the processor to perform one memory transaction per thread.
On the other hand, if the locations being accessed are sufficiently
close together, the per-thread operations can be coalesced for
greater memory efficiency. When accessing 32- or 64-bit values,
global memory can be conceptually organized into a sequence of
128-byte segments. Memory requests are serviced for 16 threads
(a half-warp) at a time. The number of memory transactions per-
formed for a half-warp will be the number of segments touched by
the addresses used by that half-warp1. If a memory request per-
formed by a half-warp touches precisely 1 segment, we call this
request fully coalesced, and one in which each thread touches a sep-
arate segment we call uncoalesced. If only the upper or lower half
of a segment is accessed, the size of the transaction is reduced [17].

Non-contiguous memory accesses reduce bandwidth efficiency
and therefore the performance of memory-bound kernels. Figure 1
illustrates the bandwidth achieved by a saxpy kernel with vari-
able stride between elements. Any stride greater than 1 results in
non-contiguous access to the x and y vectors. Since larger strides

1Earlier devices that do not support Compute Capability 1.2 have
stricter coalescing requirements [17].

result in a single warp touching more segments, we expect an in-
verse relationship between stride and performance of the memory-
bound saxpy kernel. This expectation is confirmed by our mea-
surements, which show that the effective memory bandwidth (and
hence performance) decreases as the stride increases from 1 to 33.
Memory accesses with unit stride are more than ten times faster
than those with greater separation. The double precision daxpy
kernel shows similar behavior, although it achieves roughly twice
the bandwidth of saxpy at larger strides. Ensuring proper mem-
ory alignment is also important, as unaligned accesses will deliver
only approximately 60% of the aligned access rate.

The GPU provides a small cache—referred to as a texture cache
because of its use in the graphics pipeline—for read-only data. This
cache does not reduce the latency of loads. Its purpose is to amplify
bandwidth by aggregating load requests to the same address from
many threads, effectively servicing them all with a single off-chip
memory transaction. Except where otherwise noted, our SpMV
kernels access the vector x via this cache while using uncached
loads to access the representation of the matrix A.

3. MATRIX-VECTOR MULTIPLICATION
Sparse matrix-vector multiplication (SpMV) is arguably the

most important operation in sparse matrix computations. Iterative
methods for solving large linear systems (Ax = b) and eigenvalue
problems (Ax = λx) generally require hundreds if not thousands of
matrix-vector products to reach convergence. In this paper, we con-
sider the operation y←Ax+y where A is large and sparse and x and
y are column vectors. While not a true analog of the BLAS gemv
operation (i.e., y← αAx+βy), our routines are easily generalized.
We choose this SpMV variant because it isolates the sparse com-
ponent of the computation from the dense component. Specifically,
the number of floating point operations in y← Ax + y is always
twice the number of nonzeros in A (one multiply and one add per
element), independent of the matrix dimensions. In contrast, the
more general form also includes the influence of the vector oper-
ation βy which, when the matrix has few nonzeros per row, will
substantially skew performance.

Because of the importance of SpMV operations, there is a
substantial literature exploring numerous optimization techniques.
Vuduc [22] provides a good overview of these techniques, many of
which are implemented in the Sparsity framework [12]. One of the
primary goals of most SpMV optimizations is to mitigate the im-
pact of irregularity in the underlying matrix structure. This is also
our central concern. Specifically, we aim to minimize execution
and memory divergence caused by the potential irregularity of the
underlying sparse matrix. Since an efficient SpMV kernel should
be memory-bound, our measure of success will be the fraction of
peak bandwidth these kernels can achieve.

We address this problem by focusing on choosing appropriate
matrix formats and designing parallel kernels that can operate on
these formats efficiently. We choose well-known formats—DIA,
ELL, CSR, and COO—that are supported by standard sparse ma-
trix packages such as SPARSKIT [18], and we organize our com-
putations to minimize divergence. Not surprisingly, our techniques
follow optimization techniques that were successful on vector and
SIMD machines of the past.

Given a particular matrix, it is essential that we select a for-
mat that is a good fit for its sparsity pattern. We identify three
basic sparsity regimes: (1) diagonal matrices, (2) matrices with
roughly uniform row lengths, and (3) matrices with non-uniform
row lengths. Each of these sparsity regimes is best addressed us-
ing different formats. Since we are not concerned with modifying
matrices, we restrict our attention to static formats, as opposed to



A=


1 7 0 0
0 2 8 0
5 0 3 9
0 6 0 4


DIA format:

data=


∗ 1 7
∗ 2 8
5 3 9
6 4 ∗

 offsets=
[
−2 0 1

]

ELL format:

data=


1 7 ∗
2 8 ∗
5 3 9
6 4 ∗

 indices=


0 1 ∗
1 2 ∗
0 2 3
1 3 ∗


CSR format:

ptr=
[
0 2 4 7 9

]
indices=

[
0 1 1 2 0 2 3 1 3

]
data=

[
1 7 2 8 5 3 9 6 4

]
COO format:

row=
[
0 0 1 1 2 2 2 3 3

]
indices=

[
0 1 1 2 0 2 3 1 3

]
data=

[
1 7 2 8 5 3 9 6 4

]
Figure 2: Sparse matrix representations for a simple example
matrix A. Padding entries (marked ∗) are set to zero.

those suitable for rapid insertion and deletion of elements. Further-
more, we do not consider transformations such as row permutation
that globally restructure the matrix.

In this paper, we summarize how data is laid out in memory and
how work is assigned to parallel threads. The source code for these
SpMV programs can be found in our technical report [4] and its
accompanying software package.

3.1 Diagonal Format
When nonzero values are restricted to a small number of matrix

diagonals, the diagonal format (DIA) is an appropriate represen-
tation [19]. Although not general purpose, this format efficiently
encodes matrices arising from the application of stencils to regular
grids, a common discretization method.

The diagonal format is formed by two arrays: data, which
stores the nonzero values, and offsets, which stores the offset of
each diagonal from the main diagonal. Diagonals above and below
the main diagonal have positive and negative offsets, respectively.
Figure 2 shows an example.

Parallelizing SpMV for the diagonal format is straightforward.
We assign one thread to each row and store data in column-major
order so that consecutive elements within each diagonal are adja-
cent. As each thread iterates over the diagonals crossing its row,
this memory layout guarantees that contiguous threads access con-
tiguous elements of the data array, as shown in Figure 3. Since

data
[
∗ ∗ 5 6 1 2 3 4 7 8 9 ∗

]
Iteration 0

[
2 3

]
Iteration 1

[
0 1 2 3

]
Iteration 2

[
0 1 2

]
Figure 3: The DIA data array and the memory access pattern
of the DIA SpMV kernel running in 4 threads across 3 itera-
tions.

data
[
1 2 5 6 7 8 3 4 ∗ ∗ 9 ∗

]
indices

[
0 1 0 1 1 2 2 3 ∗ ∗ 3 ∗

]
Iteration 0

[
0 1 2 3

]
Iteration 1

[
0 1 2 3

]
Iteration 2

[
0 1 2 3

]
Figure 4: Memory access pattern of the ELL SpMV kernel.

the DIA format for this matrix has three diagonals the data ar-
ray is accessed three times by each of the four executing threads.
Given that consecutive rows, and hence threads, correspond to
consecutive matrix columns, threads within the same warp access
the x vector contiguously as well. We gain further efficiency by
padding columns to align the data array properly and by reading
the offsets array only once per thread block, rather than once
per thread.

The diagonal format avoids the need to store row/column in-
dices and guarantees contiguous (i.e., coalesced) accesses to the
data, x, and y arrays. However, it can also potentially waste stor-
age since it allocates additional memory for padding and explicitly
stores zero values that occur in occupied diagonals. Within its in-
tended application area—stencils applied to regular grids—these
problems do not arise. However, it is important to note that many
matrices have sparsity patterns that are inappropriate for DIA.

3.2 ELL Format
The ELLPACK/ITPACK [11] (or ELL) format is more general

than DIA and is particularly well-suited to vector architectures. An
M-by-N sparse matrix with at most K nonzeros per row is stored
as a dense M-by-K array data of nonzeros and array indices
of column indices. All rows are zero-padded to length K. ELL is
more general than DIA since the nonzero columns need not follow
any particular pattern. See Figure 2 for an example of this format.
ELL is most efficient when the maximum number of nonzeros per
row does not substantially differ from the average, which is often
the case with matrices obtained from semi-structured meshes and
well-behaved unstructured meshes.

The structure of the ELL computation is nearly identical to the
DIA case, with the exception that column indices are explicit in
ELL and implicit in DIA. The memory access pattern of the ELL
kernel, shown in Figure 3, is also similar. As with DIA, we store
the ELL arrays in column-major order and pad them for alignment.
However, unlike DIA, the ELL kernel does not necessarily access
the x vector contiguously.



indices
[
0 1 1 2 0 2 3 1 3

]
data

[
1 7 2 8 5 3 9 6 4

]
Iteration 0

[
0 1 2 3

]
Iteration 1

[
0 1 2 3

]
Iteration 2

[
2

]
Figure 5: CSR arrays indices and data and the memory
access pattern of the scalar CSR SpMV kernel.

indices
[
0 1 1 2 0 2 3 1 3

]
data

[
1 7 2 8 5 3 9 6 4

]
Warp 0

[
0 0

]
Warp 1

[
1 1

]
Warp 2

[
2 2 2

]
Warp 3

[
3 3

]
Figure 6: CSR arrays indices and data and the memory
access pattern of the vector CSR SpMV kernel.

3.3 Compressed Sparse Row Format
The compressed sparse row (CSR) format is perhaps the most

popular general-purpose sparse matrix representation. Like the
ELL format, CSR explicitly stores column indices and nonzero val-
ues in arrays indices and data. A third array of row pointers,
ptr, allows the CSR format to represent rows of varying length.
Figure 2 illustrates the CSR representation of an example matrix.

Like DIA and ELL, one simple approach to parallelizing the
CSR SpMV operation is to assign one thread to each matrix row.
We refer to this method as the scalar CSR kernel. While the
scalar kernel exhibits fine-grained parallelism, its performance suf-
fers from several drawbacks. The most significant among these
problems is the manner in which threads within a warp access the
CSR indices and data arrays. While the column indices and
nonzero values for a given row are stored contiguously in the CSR
data structure, these values are not accessed simultaneously. In-
stead, each thread reads the elements of its row sequentially, pro-
ducing the pattern shown in Figure 5. We have previously described
variants of the scalar kernel that use on-chip shared memory to
buffer windows of x and improve coalescing of A [16, 10]. While
these variants can improve performance in some case by up to a
factor of 2 on older hardware generations [10], they make several
structural assumptions, notably that A is square and that its rows
are all relatively small.

In an alternative to the scalar method, which we call the vector
kernel, one warp processes each matrix row. The vector kernel can
be viewed as an application of the vector strip mining pattern to the
sparse dot product computed for each matrix row. Unlike the other
kernels we have discussed so far, the vector kernel requires coordi-
nation among threads in the form of a intra-warp parallel reduction
to sum per-thread results together. Note that the parallel reduction
changes the order of summation from that of the scalar kernel.

The vector kernel accesses indices and data contiguously,
and therefore overcomes the principal deficiency of the scalar ap-

proach. Memory access in Figure 6 are labeled by warp index
(rather than iteration number) since the order in which different
warps access memory is undefined and indeed, unimportant for co-
alescing considerations. In this example, no warp iterates more
than once while reading the CSR arrays since no row has more
than 32 nonzero values. Baskaran and Bordawekar [3] have inde-
pendently implemented an essentially similar approach, although
they assign one half-warp to each row and pad each row to be a
multiple of 16 in length. Their padding guarantees alignment, and
hence slightly higher degrees of coalescing, albeit at the cost of po-
tentially significant additional storage. This may incrementally im-
prove performance in some cases, but shares the same fundamental
performance characteristics.

Unlike DIA and ELL, the CSR storage format permits a vari-
able number of nonzeros per row without wasted space. While
CSR efficiently represents a broader class of sparse matrices, this
additional flexibility introduces thread divergence. For instance,
when the scalar kernel is applied to a matrix with a highly variable
number of nonzeros per row, it is likely that many threads within
a warp will remain idle while the thread with the longest row con-
tinues iterating. Matrices whose distribution of nonzeros per row
follows a power law distribution are particularly troublesome for
the scalar kernel. Since warps execute independently, this form of
thread divergence is less pronounced in the vector kernel. On the
other hand, efficient execution of the vector kernel demands that
matrix rows contain a number of nonzeros greater than the warp
size (32). As a result, performance of the vector kernel is sensitive
to matrix row size.

3.4 Coordinate Format
The coordinate (COO) format is a particularly simple storage

scheme. As shown in Figure 2, the arrays: row, indices, and
data store the row indices, column indices, and values, respec-
tively, of the nonzero entries. We further assume that entries with
the same row index are stored contiguously.

We perform parallel SpMV on COO matrices by assigning one
thread to each nonzero. Each thread computes the appropriate
Ai j x j product and we then perform a segmented reduction oper-
ation to sum values across threads. Our method is similar to the
segmented sum formulation used by Blelloch et al. [7, 6] on the
CM-2 and Cray C90 and the CUDA-based segmented scan imple-
mentation by Sengupta et al. [20]. Figure 7 illustrates the mem-
ory access pattern of the COO kernel. Here we have illustrated the
case of a single executing warp on a fictitious architecture with four
threads per warp. The primary advantage of the COO kernel, and
segmented operations in general, is that its performance is largely
insensitive to irregularity in the underlying data structure. There-
fore, our COO method offers robust performance across a wide
variety of sparsity patterns.

Our COO kernel is broadly similar to the segmented scan im-
plementation described by Sengupta et al. [20], provided in the
CUDPP [9] library, and which we have previously used our-
selves [10]. However, our current implementation, being tailored
specifically to SpMV rather than parallel scan in general, differs in
a few concrete ways. We fuse the product formation and reduction
into a single kernel. We use segmented reduction, which is moder-
ately simpler and cheaper than segmented scan, and therefore better
suited to SpMV. Furthermore, we use row indices in place of other
segment descriptors (e.g., head flags), which is another application-
specific optimization.

3.5 Hybrid Format
While the ELLPACK format is well-suited to vector and SIMD



row
[
0 0 1 1 2 2 2 3 3

]
indices

[
0 1 1 2 0 2 3 1 3

]
data

[
1 7 2 8 5 3 9 6 4

]
Iteration 0

[
0 1 2 3

]
Iteration 1

[
0 1 2 3

]
Iteration 2

[
0
]

Figure 7: COO arrays row, indices, and data and the mem-
ory access pattern of the COO SpMV kernel.

architectures, its efficiency rapidly degrades when the number of
nonzeros per matrix row varies. In contrast, the storage efficiency
of the COO format is invariant to the distribution of nonzeros per
row, and the use of segmented reduction makes its performance
largely invariant as well. To obtain the advantages of both, we com-
bine these into a hybrid ELL/COO format.

The purpose of our hybrid (HYB) format is to store the typical
number of nonzeros per row in the ELL data structure and the re-
maining entries of exceptional rows in the COO format. The typical
number of nonzeros per row is often known a priori, as in the case
of manifold meshes, and the ELL portion of the matrix is readily
extracted. However, in the general case this number must be de-
termined directly from the input matrix. Our implementation com-
putes a histogram of the row sizes and determines the the largest
number K such that using K columns per row in the ELL portion
of the HYB matrix meets a certain objective measure. Based on
empirical results, we assume that the fully-occupied ELL format
is roughly three times faster than COO, except when the number
of rows is less than (approximately) 4K. Under these modeling as-
sumptions, it is profitable to add a K-th column to the ELL structure
when the number of matrix rows with K (or more) nonzeros is at
least max(4096, M/3), where M is the total number of matrix rows.
When the population of rows with K or more nonzero values falls
below this threshold, the remaining nonzero values are placed into
COO.

3.6 Format Summary
Table 1 summarizes the salient features of our SpMV kernels.

For the HYB entries, we have assumed that only a small number
of nonzero values is stored in the COO portion. Recall that full
utilization of the GPU requires many thousands of active threads.
Therefore, the finer granularity of the CSR (vector) and COO ker-
nels is advantageous when applied to matrices with a limited num-
ber of rows. Note that such matrices are not necessarily small, as
the number of nonzero entries per row is still arbitrarily large.

Except for the CSR kernels, all methods benefit from full coa-
lescing when accessing the sparse matrix format. As Figure 5 illus-
trates, the memory access pattern of the scalar CSR kernel seldom
benefits from coalescing. Warps of the vector kernel access the
CSR structure in a contiguous but not generally aligned fashion,
which implies partial coalescing.

The rightmost columns of Table 1 reflect the computational in-
tensity of the various kernels. In single precision arithmetic, the
DIA kernel generally has the lowest ratio of bytes per FLOP, and
therefore the highest computational intensity. Meanwhile, the COO
format, which explicitly stores (uncompressed) row and column en-
tries, has the lowest intensity.

Note that these figures are only rough approximations to the true

Bytes/FLOP

Kernel Granularity Coalescing 32-bit 64-bit

DIA thread : row full 4 8
ELL thread : row full 6 10
CSR (scalar) thread : row rare 6 10
CSR (vector) warp : row partial 6 10
COO thread : nonzero full 8 12
HYB thread : row full 6 10

Table 1: Summary of SpMV kernel properties.

computational intensities, which are matrix-dependent. Specifi-
cally, these estimates ignore accesses to the y vector, the ptr array
of the CSR format, and the offset array of the DIA format. Our
matrix-specific bandwidth results in Section 4 provide a more ac-
curate empirical measurement of actual bandwidth usage.

3.7 Implementation Notes
Our SpMV kernel implementations use standard CUDA idioms

such parallelizing the outermost for loop over many threads and
computing parallel reductions or segmented scans in shared mem-
ory. Vector formats like DIA and ELL are well-suited to this pro-
gramming model and have straightforward implementations. Sim-
ilarly, our CSR (scalar) kernel is a direct translation [4] of the stan-
dard serial CSR SpMV implementation to CUDA.

However, like Volkov and Demmel [21], we sometimes adopt a
persistent warp-oriented programming style as opposed to the stan-
dard block-oriented approach [17]. Here, “persistent” means that a
fixed number of warps are launched and proceed to iterate many
times as they process a specific interval of the data set. Letting
W denote the number of active warps, a warp of the CSR (vector)
kernel processes O(M/W ) rows, where M is the total number of
matrix rows. Similarly, each warp of the COO kernel processes
O(NNZ/W ) matrix elements, where NNZ is the total number of
nonzero values. In either case the warps persist over the duration
of the computation, as opposed to processing a fixed number of
results before being retired (as a block) and replaced with another
block. This strategy benefits the CSR (vector) kernel as it tends to
even out moderate imbalances in per-row workload. In the COO
kernel, persistence permits the “carry out” value of one iteration
(i.e., a set of 32 elements) to pass into the “carry in” of the next
iteration without being written to DRAM, as a non-persistent ap-
proach would necessitate.

To facilitate reproducibility, our SpMV implementations are
available as open source software. These kernels also provide
the basis of CUSP [5], a library of generic parallel algorithms for
sparse matrix and graph computations, which is currently in devel-
opment.

4. PERFORMANCE ANALYSIS
In order to assess the efficiency of these sparse formats and their

associated kernels, we have collected SpMV performance data on
a broad collection of matrices. All of our experiments are run on
a system comprised of an NVIDIA GTX 285 GPU paired with an
Intel Core i7 965 CPU. Each of our SpMV performance measure-
ments is an average (arithmetic mean) over 500 trials or 3.0 seconds
of execution time, whichever is less. We report computation rates
in terms of GFLOP/s, which we determine by dividing the required
arithmetic operations—precisely twice the number of nonzeros in
the matrix—by the average running time. We characterize mem-



ory throughput using the effective bandwidth of the computation:
the total number of bytes read/written by all threads divided by av-
erage running time. This may differ somewhat from the amount
of data being transacted with DRAM when caching is used for the
x vector; however, this remains a reasonable model of bandwidth
utilization since the cache amplifies bandwidth without reducing
latency.

Our measurements do not include time spent transferring data
between host (CPU) and device (GPU) memory, since we are trying
to measure the performance of the kernels. In many applications,
the relevant data structures are created on the device, or reside in
device memory for the duration of a series of computations, which
renders the cost of such transfers negligible. When the data is not
resident in device memory, such as when the device is used to ac-
celerate a single, self-contained component of the overall compu-
tation, then transfer overhead is a potential concern. For example,
when the device is used to offload an iterative solver (e.g., the con-
jugate gradient method [19]) then the transfer overhead is generally
amortized over 100s or 1000s of solver iterations. In this case, the
available host/device bandwidth is not a bottleneck.

4.1 Synthetic Tests
We begin our performance study with a collection of synthetic

examples which highlight the tradeoffs discussed in Section 3.6.
Efficient SpMV execution on the GPU requires the computation
to be divided into thousands of threads of execution. Our target
platform, the GTX 285 processor, accommodates up to 30K co-
resident threads and typically requires several thousand threads to
reach full utilization.

Our SpMV kernels operate on various granularities, either (1)
one thread per row, (2) one warp per row, or (3) one thread per
nonzero element. Consequently, these kernels expose different lev-
els of parallelism on different matrices. For example, assigning
one thread per row, as in ELL, implicitly assumes that the number
of rows is large enough to generate sufficient parallel work. In con-
trast, assigning one thread per nonzero, as in COO, only requires
that the total number of nonzero entries is sufficiently large.

Figure 8 explores the relationship between work granularity and
efficiency on a sequence of dense matrices stored in sparse format.
We vary the dimension of these matrices while holding the num-
ber of nonzeros fixed at (approximately) 4M. As expected, COO
performance is essentially independent of the matrix dimensions;
there is only a slight increase as the number of rows approaches the
total number of matrix entries due to coalescing of writes to the y
vector. The CSR (vector) kernel performance peaks once the num-
ber of rows is comparable to the maximum number of warps that
can be co-resident (960), and degrades as the row length drops be-
low 32 since those rows underutilize the 32-thread warps assigned
to process them. Similarly, performance of the ELL kernel peaks
when the number of matrix rows exceeds the maximum number
of threads (30K). Note that the threshold used in the HYB format
modeling assumptions (cf. Section 3.5) is related to the crossover
point between ELL and COO performance. Indeed, this parameter
choice ensures that HYB performance (not shown) is equal to the
maximum of the ELL or COO rates across this set of examples.
The ELL, COO, and CSR (scalar) kernels converge to roughly the
same level when there is only 1 nonzero per row. While in most
practical usage scenarios, the decomposition strategies employed
by CSR (vector) and ELL expose sufficient parallelism to fully uti-
lize the processor, this example highlights the value of robust par-
allel strategies in atypical scenarios.

In addition to exposing a high degree of parallelism, efficient
SpMV kernels must also effectively balance the per-thread work-
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Figure 9: SpMV performance with Pareto-distributed row
lengths. Variance in row length (dashed curve) is substantial.

load. This is particularly true for threads within a warp, where
inter-thread imbalance guarantees underutilization of the processor
cores. Figure 9 demonstrates the effect of varying row length dis-
tribution on kernel performance. We construct a set of matrices
with 30K rows of 32+δ nonzeros each, where δ is a random vari-
able drawn from a Pareto distribution. As the Pareto parameter k
is increased from 1, the variance in row lengths decreases rapidly.
The Pareto distribution is a power law probability distribution that
models event frequencies in various scientific phenomena. There-
fore, there can be a drastic difference in size between the largest
rows and the average. Within certain application areas it is not un-
common to find sparse matrices with such power-law row length
distributions.

Figure 9 shows the results of this experiment. Again as expected,
COO performance is almost completely insensitive to row length
distribution. Both CSR kernels suffer significantly at high variance
(k = 1). The effect on the vector kernel is less severe because (1)
CSR (vector) performance improves with row size and (2) separate
warps are independent, whereas threads within a warp must wait
until all threads have finished their respective rows. Since there
is no implicit synchronization between different warps, we allow
warps of the vector kernel to iterate over several rows, thus smooth-
ing out load imbalance. Although warps within the same block are
retired together, this looser form of (unnecessary) synchronization
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is less detrimental to performance than the finer-grained implicit
synchronization imposed on threads within a warp.

To isolate the effect of row length on CSR kernel performance
we present Figure 10, which shows the running time of the CSR
kernels on 256K-by-256K matrices with varying numbers of diag-
onal bands. With the exception of the first and last few rows, the
number of nonzeros per row is directly proportional to the number
of bands. The time required by the CSR (vector) kernel is virtually
constant and does not depend on the number of bands. In contrast,
the time required by the CSR (scalar) slowly increases and then en-
ters a regime of linear growth. In both kernels, coalescing of mem-
ory operations is responsible for the observed performance. Since
CSR (vector) accesses contiguous sections of memory it benefits
from coalescing, which allows large segments of memory to be ac-
cessed with little or no additional cost. When processing a matrix
with bandwidth K, the consecutive threads of the CSR (scalar) ker-
nel access memory with stride K. Therefore, when K is small, CSR
(scalar) receives some benefit from memory coalescing. This fact
accounts for the relative efficiency of K = 1,3,5,7 as compared to
the linear scaling regime for K > 16. The banded matrices serve to
illustrate a case where the available parallelism is high, variance in
row length is low, but yet efficiency of the SpMV kernels suffers
due to poor utilization of computational resources and the memory
subsystem.

Matrix Grid Diagonals Nonzeros

Laplace 3pt (1,000,000) 3 2,999,998
Laplace 5pt (1,000)2 5 4,996,000
Laplace 7pt (100)3 7 6,940,000
Laplace 9pt (1,000)2 9 8,988,004
Laplace 27pt (100)3 27 26,463,592

Table 2: Laplacian operators discretized as k-point finite dif-
ference stencils on regular grids.

4.2 Structured Matrices
We continue our performance study with a set of structured ma-

trices that represent common stencil operations on regular 1-, 2-,
and 3-dimensional grids. Our test set, listed in Table 2, consists
of standard discretizations of the Laplace operator in these dimen-
sions. The number of points in the stencil is precisely the number
of occupied matrix diagonals, and thus the number of nonzeros per
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Figure 11: SpMV throughput on structured matrices.

row, excepting rows corresponding to grid boundaries. Figure 11
shows SpMV performance for these matrices.

The DIA kernel, which is explicitly intended for this case, offers
the best performance in all examples. On the 27-point example,
the DIA kernel reaches 39.6 GFLOP/s and 18.4 GFLOP/s in single
and double precision respectively. ELL performance is similar to
DIA, although uniformly slower, because of the overhead of using
explicit column indices. HYB performance (not shown) is identi-
cal to ELL performance on structured matrices, since all nonzeros
would be stored in its ELL portion.

Although not competitive with DIA and ELL, the COO kernel
exhibits stable performance across the structured matrices. The
CSR (vector) kernel is also uncompetitive because it uses one 32-
thread warp per row, and all matrices here have fewer than 32
nonzeros per row. It therefore suffers from underutilization.

Observe that CSR (scalar) performance decreases as the number
of diagonals increases. The number of nonzeros across all rows
in each matrix is essentially constant, so execution divergence is
minimal. Memory divergence is the cause of this decline, since the
increasing number of nonzeros per row gradually eliminates the
possibility for coalesced loads, just as shown in Figure 10.

Although GFLOP/s is our primary metric for computational
throughput, memory bandwidth utilization tells us how efficiently
we are using the processor. Figure 12 reports measured memory
bandwidth for single precision SpMV with and without caching of
x. The maximum theoretical memory bandwidth of the GTX 285 is
159.0 GBytes/s, and without the aid of caching, the DIA and ELL
kernels deliver as much as 73.5% and 79.5% of this figure respec-
tively. With caching of x enabled, the maximum effective band-
width of DIA is 167.1 GByte/s and 170.5 GByte/s for ELL, which
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Figure 12: Bandwidth results for structured matrices with sin-
gle precision values.

are 105.1% and 107.2% of peak, respectively. In other words, there
is enough re-use of x through the cache to exceed the physical peak
bandwidth.

While the peak rate of double precision arithmetic on the
GTX 285 is an order of magnitude less than the peak single preci-
sion rate, SpMV performance is generally bandwidth-limited, and
therefore does not approach the limits of floating point throughput.
Indeed, DIA double precision (uncached) performance in the 27-
point example is 45.9% that of the single precision result, which
nearly matches the ratio of bytes per FLOP of the two kernels
(50%) as listed in Table 1. For the ELL kernel, a similar analy-
sis suggests a relative performance of 60.0% (double precision to
single precision) which again agrees with the 59.2% observed.

Since the remaining kernels are not immediately bandwidth-
limited, we cannot expect a direct correspondence between relative
performance and computational intensity. In particular, the CSR
(scalar) kernel retains 92.5% of its single precision performance,
while computational intensity would suggest a 60.0% figure. This
anomaly is explained by the fact that uncoalesced double-word
memory accesses are inherently more efficient than uncoalesced
single-word accesses on a memory bandwidth basis (cf. Figure 1).

4.3 Unstructured Matrices
Our unstructured matrix performance study considers the same

14 matrix corpus (cf. Table 3) used by Williams et al. [23] in their
multicore benchmarking study. Figure 13 reports single and dou-
ble precision performance. In contrast to the structured case, the
unstructured performance results are varied, with no single kernel
outperforming all others. The HYB format achieves the highest
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Figure 13: SpMV throughput on unstructured matrices.
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absolute performance, reaching 24.2 GFLOP/s in the Wind Tunnel
example and over 20 GFLOP/s in five of fourteen examples using
single precision arithmetic. In this case, the ELL portion of the
HYB format stores 99.4% of the nonzero entries. The HYB for-
mat also performs relatively well on highly irregular matrices such
as LP, where the COO portion of the HYB format stores the vast
majority of nonzero entries (99.1%).

Although the dense 2,000-by-2,000 matrix is efficiently stored in
ELL (and therefore HYB) format, it does not perform well in this
case. This is because the 2000 threads used (one per row) provide
insufficient parallelism to fully utilize the GPU.

The CSR (vector) kernel is significantly faster than HYB on the
2,000 row dense matrix. Here the finer granularity of the vector
kernel (one warp per row), decomposes the SpMV operation into
64,000 distinct threads of execution, which is more than sufficient
to fill the device. As with the structured matrices, the vector kernel
is sensitive to the number of nonzeros per matrix row. On seven
examples with an average of 50 or more nonzeros per row, the vec-
tor kernel performs no worse than 12.8 GFLOP/s. Conversely, the
matrices with fewer than four nonzeros per row, Epidemiology and
Webbase, contribute the worst results, at 1.8 and 1.3 GFLOP/s re-
spectively.

Compared to the other kernels, COO performance is relatively
stable across the test cases. The COO kernel performs particularly
well on the LP matrix, which proves especially challenging for the
other methods. Although LP is the only instance where COO ex-
hibits the best performance, it is clearly a robust fallback for matri-
ces with pathological row length distributions.

With caching disabled, the memory bandwidth utilization of the
HYB kernel, shown in Figure 14, exceeds 100 GByte/s, or 63%
of the theoretical maximum, on several unstructured matrices. The
bandwidth disparity between structured and unstructured cases is
primarily attributable to the lack of regular access to the x vector.
Caching mitigates this problem to a degree, improving computa-
tional throughput by an average of 30% and 25.0% in single and
double precision respectively. Among the fastest five examples,
caching improves (effective) bandwidth utilization from an aver-
age of 109.8 GBytes/s to 145.0 GBytes/s, or from 69.1% to 91.2%
of the theoretical peak.

Together, our CSR and HYB kernels surpass the 10.0 GFLOP/s
mark in eight of the fourteen unstructured test cases using dou-
ble precision arithmetic. As shown in Figure 13, the CSR (vector)
kernel achieves the highest absolute performance at 16.6 GFLOP/s
on the Dense matrix. Wind Tunnel represents best-case HYB per-
formance at 15.5 GFLOP/s. Again, COO performance is stable,

Matrix Rows Columns NNZ NNZ/Row

Dense 2,000 2,000 4,000,000 2000.0
Protein 36,417 36,417 4,344,765 119.3
FEM/Spheres 83,334 83,334 6,010,480 72.1
FEM/Cantilever 62,451 62,451 4,007,383 64.1
Wind Tunnel 217,918 217,918 11,634,424 53.3
FEM/Harbor 46,835 46,835 2,374,001 50.6
QCD 49,152 49,152 1,916,928 39.0
FEM/Ship 140,874 140,874 7,813,404 55.4
Economics 206,500 206,500 1,273,389 6.1
Epidemiology 525,825 525,825 2,100,225 3.9
FEM/Accelerator 121,192 121,192 2,624,331 21.6
Circuit 170,998 170,998 958,936 5.6
Webbase 1,000,005 1,000,005 3,105,536 3.1
LP 4,284 1,092,610 11,279,748 2632.9

Table 3: Unstructured matrices used for performance testing.
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Figure 15: Double precision performance relative to single pre-
cision performance.

varying from a minimum of 3.9 to a maximum 5.1 GFLOP/s, with
most results close to the 4.1 GFLOP/s mark.

The relative performance between double and single precision
performance is shown in Figure 15, and follows the same pattern
apparent in the structured case. The median double precision HYB
performance is 65.5% of the corresponding single precision result.
For CSR (vector), the median is 73.7%. The CSR (scalar) kernel
retains 91.8% of its single precision performance, again owing the
relative bandwidth efficiency of divergent double-word memory ac-
cess to single-word accesses.

4.4 Performance Comparison
We have already demonstrated that our SpMV kernels are effi-

cient, achieving significant fractions of theoretical peak memory
bandwidth. In terms of absolute performance, our implementations
are also very competitive with optimized SpMV kernels for other
architectures. Figure 16 compares double precision SpMV perfor-
mance of our CSR (vector) and HYB kernels to the results obtained
by Williams et al. [23] on several single and dual socket multicore
systems.

Examining the single socket platforms we find that the GPU-
based methods offer the best performance in all 14 test cases, of-
ten by significant margins. This is fundamentally due to the much
higher bandwidth capacity of the GPU. The (single) GPU also out-
performs all dual socket systems in all considered cases.

Comparing the best GPU kernel (either CSR (vector) or HYB)
to these multicore kernels, we find that the median GPU perfor-
mance advantages over the single socket systems are: 2.83× for
Cell, 11.03× for Opteron, 12.30× for Xeon, and 3.13× for Nia-
gara. For dual-processor platforms, the median GPU performance
factors are: 1.56× for Cell, 5.38× for Opteron, and 6.05× for
Xeon.

5. FURTHER OPTIMIZATIONS
The SpMV kernels we have investigated are designed to deliver

reliably good performance on the broadest possible range of matri-
ces. They make only minimal assumptions about the matrices they
encounter. Consequently, they can potentially be extended with a
number of complementary optimizations for restricted subclasses
of the general SpMV problem.

We have restricted our attention to optimizations that perform no
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Figure 16: CSR and HYB kernels compared to several single and dual socket multicore platforms.

global restructuring of the matrix. Overall performance on a given
matrix could potentially be improved by careful reordering of the
rows and columns. For matrices arising from manifold meshes,
as in finite element discretizations, partitioning the matrix into spa-
tially compact pieces, as in our packet format [4], can be potentially
beneficial. Of course any such global restructuring incurs a poten-
tially non-trivial cost for restructuring, and so such techniques are
most attractive when a single matrix will be reused many times.

Block formats such as Block CSR or Variable-Block CSR [12]
can deliver higher performance on both CPU [23] and GPU [8] ar-
chitectures, particularly for matrices arising in vector-valued prob-
lems. Blocking can be valuable because it (1) decreases index-
ing overhead, (2) increases the locality of memory accesses to the
source vector, and (3) facilitates re-use of the source vector ele-
ments. The techniques we have applied to scalar formats are largely
compatible with block format extensions.

Special handling for the case of multiple source vectors, often
called block vectors, is another standard SpMV optimization. Like
blocked matrix formats, block vectors improve memory locality
and provide additional opportunities for data re-use. In the context
of iterative methods for linear systems, this situation occurs when
solving for several right-hand-sides simultaneously (i.e., AX = B
where B has multiple columns). Furthermore, in the case of eigen-
solvers such as the LOBPCG [13], it is not uncommon to utilize
block vectors with ten or more columns.

6. CONCLUSIONS
We have explored several efficient implementation techniques

for sparse matrix-vector multiplication (SpMV) in CUDA. Our ker-
nels exploit fine-grained parallelism to effectively utilize the com-
putational resources of the GPU. The efficiency of our kernels is
demonstrated by the fact that they achieve high bandwidth utiliza-
tion on both structured and unstructured matrices. We have also
demonstrated that they achieve excellent absolute performance,
outperforming highly optimized kernels on several multicore plat-
forms. Our kernels are hand-written and relatively straightforward
yet still deliver good bandwidth utilization. This reflects the design
of GPU architectures, which are specifically designed to deliver
high performance on straightforward kernels that exhibit high de-
grees of data parallelism.

The DIA and ELL techniques are well-suited to matrices ob-
tained from structured grids and semi-structured meshes, while
the COO approach based on segmented reduction performs con-

sistently across a broad spectrum of matrices. We parallelize com-
putation on the popular CSR format using both scalar and vector
approaches. The scalar approach using one thread per matrix row
does not benefit from memory coalescing, which consequently re-
sults in low bandwidth utilization and poor performance. On the
other hand, the vector approach ensures contiguous memory ac-
cess, but leads to a large proportion of idle threads when the num-
ber of nonzeros per row is smaller than the warp size. Performance
of the scalar method is rarely competitive with alternative choices,
while the vector kernel excels on matrices with large row sizes. We
have designed our HYB format, representing the matrix in ELL and
COO portions, to combine the speed of ELL and the flexibility of
COO. As a result, HYB is generally the fastest format for a broad
class of unstructured matrices.
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