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ABSTRACT

Although modular programming is a fundamental safev
development practice, software reuse within contmany GPU
kernels is uncommon. For GPU software assets toebsable
across problem instances, they must be inheretakibfe and
tunable.  To illustrate, we survey the performapogability
landscape for a suite of common GPU primitives, luating
thousands of reasonable program variants acrosge tiversity
of problem instances (microarchitecture, probleme,sand data
type). While individual specializations provide celent
performance for specific instances, we find no amts with
“universally reasonable” performance.

In this paper, we present a policy-based desigamdfor
constructing reusable, tunable software compontras can be
co-optimized with the enclosing kernel for the sfieqroblem
and processor at hand. In particular, this apgroenables
flexible granularity coarsening which allows the persive
aspects of communication and the redundant aspEctdata
parallelism to scale with the width of the processaher than the
problem size. From a small library of tunable dewsubroutines,
we have constructed the fastest, most versatile @fthltives for
reduction, prefix and segmented scan, duplicate ovain
reduction-by-key, sorting, and sparse graph tralers

Categories and Subject Descriptors
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D.2.13 [oftware Engineering]: Reusable Software; D.3.4
[Programming L anguages]: Processors eptimization

General Terms
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Keywords
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1 INTRODUCTION

Parallel computing is fundamentally motivated byfenance.
However, absolute performance is not always anusia design
objective. Sustainable software development aloes design
practices that emphasize program modularity, soéweause, and
other productivity enhancing methodologies.

It can be difficult to develop modular programs foassively
parallel machines like GPUs. Achieving high parfance while
maintaining good software abstractions is ofterllehging. The

addition of parallelism creates further complexitfpespite the
existence of many libraries of reusable CUDA kesnele see
little reuse of components within kernels themssMg2].
Furthermore, these libraries often require re-tgreffort for new
GPU architectures. As GPUs evolve and existinggmanms
mature, we are increasingly motivated to simultaiso satisfy
the design objectives of (1) absolute performancel #2)
portability and reuse, despite their often advéasagelationship.

We believe the dearth of reusable kernel components
corresponds to a lack of performance portabilifhe absolute
performance of many kernels is significantly infiged by
problem type, problem size, and specific GPU miaioidecture.
As a consequence, performance-sensitive applicaterive little
value from libraries of reusable device subroutitiedg cannot be
tailored for the specific problem and processohatd. In this
paper, we present a software design methodologydlory-based
tuning where authors of reusable software componentessgihe
“general shape” of their solutions, leaving many tfe
performance sensitive details unbound.

This approach was developed for the Back40 libcdrgPU
computing [3]. To our knowledge, Back40 provides fastest
and most performance-portable implementations afucton,
prefix scan, segmented scan, duplicate removaltodrism,
reduce-by-key, sorting of numeric primitives, arghrse graph
traversal. These primitives are all constructednfia core library
of reusable, tunable device subroutines for comnkennel
activities (e.g., workload management, data moveyvamniants of
local reduction and prefix scan, etc.).

We motivate our policy-based design methodologyh véih
examination of performance portability landscapewsd ahe
performance benefits of implementing flexible algonic
granularity.

1.1 Investigation of performance portability

We evaluate the performance portability landscafms the
following archetypal sequence-processing primitivesopy-
transform, reduction, prefix scan, and reduce-by-Ké/e explore
the tuning spaces for these problems across ayafieata types,
problem sizes, and NVIDIA microarchitecture (GF1@T200,
and G92). Our results show:

* A large performance variation among program inganc
representative of manually authored code.

« We can identify optimal or near-optimal program
variants for many combinations of problem type and
microarchitecture.

e No single program variant provides “universally
reasonable” performance across all data types,lgarob



sizes, and architectures. While we expected dttéref
of program variants to individual problem instanose

were surprised by the lack of well-rounded program

variants.

1.2 Policy-based tuning

These empirical observations motivate our softwaksign

methodology centered on policy-based tuning. Themise of
policy-based tuning is to insulate both programnaard reusable
software components from cementing implementatienisions
having opaque performance consequences. By leasiro

decisions unbound within the program text, we aaestgeneric
implementations that can later be specialized fi@cBic problem
instances and target microarchitectures. Thisaallos to obtain
excellent absolute performance as well as perfocaaortability
from reusable software components.

The approach we describe is based on
metaprogramming. More specifically, our methodglog
incorporates procedural interfaces having paramptticy types.
The text for a given procedure refers to theseecéfle policy
parameters to describe how the compiler should rekpeouple,
and select from various phases of sequential andllgla
computation. This provides us with the interfatexibility to
adapt reusable components within the context ofehelosing
implementation, problem, and processor.

1.3 Flexible granularity coarsening

Our policy-based tuning methodology was principaéveloped
to permit flexible granularity coarsening, the expression of
programs that accommodate a sliding scale of ghrakrsus

sequential computation. By limiting the amountcehcurrency
expressed by the program, we force the costs oéathr
cooperation and parallelism to scale with the width the

processor rather than the problem size.

Flexible granularity can complicate parallel pragsabecause
the program text must combine code for both sena parallel
phases. Furthermore, we want to leave unbound: ifdjhthe
number of steps each phase is to be run; and @witith of
parallelism for each phase. Policy-based tunirigwal us to
specialize a program text by adapting the amounexgfosed
concurrency to individual processors, includingsihthat may not
yet be known.

Our work illustrates the benefit of matching appiate task
granularities with the width of the underlying hamde. At the
global scheduling level, we show that increasirgghanularity of
work performed by threadblocks provides computaticavings
of 67% for global reduction, 42% for global prefixm, and 27%
for radix sorting passes. At the local level, easing the
sequential workloads of individual threads yieldsnputational
savings of 67% and 44% for intra-threadblock reiducand scan,
respectively.

2 GPUCOMPUTING

Contemporary processor architecture provides isanga
parallelism in order to deliver higher throughputhile
maintaining energy efficiency. Modern GPUs arehat leading
edge of this trend, provisioning tens of multipres@r cores per
chip, each of which manages on the order of a drudibardware-
scheduled threads. Each core employs data pa&hiD (single
instruction, multiple data) techniques in whichiregge instruction
stream is executed by a fixed-size grouping ofatisecalled a

warp. A threadblock is a group of threads that will be co-located

on the same core and share a local on-chip scramory.

C++

Parallel threads are used to execute a single gmygorkernel.
Coherence within shared memory spaces follows thi-b
synchronous parallel model [30].

3 TUNING ASAN EXPLICIT DESIGN
METHODOLOGY

We can generalize the inherent challenges of hrall
programming as stemming from two related souremsressing
parallelism, andmapping the expression of parallelism onto real
hardware. The former encapsulates the creativeecespof
devising and authoring a clean, concise, and codescription of
parallel computation. The latter comprises thefical aspects of
compiling and scheduling such descriptions of cotaen and
data movement onto the underlying hardware for cieffit
execution.

The twin burdens of expression and mapping haverigally
fallen separately upon the shoulders of the programand the
compiler/runtime, respectively. For sequential gpamns,
compilers and dynamic CPU pipelines have largebcsaded in
providing performance-portability without expliguidance from
the programmer.

However, the effectiveness of this arrangementigkely to
continue as contemporary processor architectureraarab ever-
increasing parallelism. As we discuss in thisisecta philosophy
of complete insulation from the mapping procedess useful for
achieving both portability and performance. At sforit is
counterproductive. In particular, there are thspects of
mapping that would benefit from explicit guidancer the
programmer: variable concurrency, algorithm setecti and
resource scheduling.

3.1 Variableconcurrency

Parallel computing adds an important facet to thecegss of
mapping programs onto hardware: the amount of avecay
expressed by the program text. Many programmirgjrattions
are designed for the program to speeifyavailable concurrency.
For example, SISAL [17], MultiLisp [13], and VHDL1§] are
well-known declarative languages for expressing ttiata
dependences that expose which computations careqaom
parallel. Similarly, the abstractions for data gii@tism within
frameworks such as OpenMP [7], CUDA [5], and Mapied[8]
require the specification of independent operaticdos be
performed on every data element.

In this vein, GPU programmers are encouraged testooct
data-parallel task decompositions that instan@atamique logical
thread for every data item. The abstract machindainsupports
this idiom through thread virtualization, i.e., tdecoupling of
logical threads from hardware threads. This idisimplifies
development: programmers need only express a sihgheithmic
strategy that encodes the smallest granularity afalfel
computation.

On the surface, this idiom is also attractive foapping
programs onto hardware. First, the approach essilrat the
concurrency expressed by a given program is botkimaé and
scales with problem size. These two properties useful for
achieving strong and weak scaling, respectivelyecod, the
idiom provides good portability. It abstracts awtag physical
details of processor cores and SIMD widths that ney across
GPUs. Finally, the oversubscription of processgments with
short-lived tasks helps ensure good load balaneimg) overall
utilization.

However, this style of thread decomposition hasartgnt
performance consequences for cooperative probleiss,



parallelizations with sharing dependences. Wheicéd threads
scale with input size, so does the amount of conication
through memory. Communication between logical adseoften
results in the same data being loaded back intistezg on the
same processor core, yet at the expense of manl cjeles and
costly synchronization for correctness. We wouldfgr not to
move such data at all. This implies that commuitucaoverhead
should scale with physical processing elementspraiilem size.

Furthermore, a portion of the overall instructioorioad also
scales with logical threads. Local computation hikit a
threadblock typically involves computing conditibredicates,
performing offset calculations, initializing localariables and
shared memory, etc. Many of these operationsderical across
threadblocks. For example, thredn one threadblock is likely
to have the same activation schedule and accessathe shared
memory locations as threddin all other threadblocks. These
identical instructions are effectively redundantewhthey are
ultimately executed on the same SIMD lanes. Wihennumber
of threadblocks scales with problem size, this neldunt
computation does as well.

We can reduce the presence of unnecessary congputatd
communication by increasing the granularity, iaeount of serial
work performed by each thread, warp, and threa#tbl@@ur goal
is to construct parallelizations where logical Hus are a multiple
of machine width, not problem size.

3.2 Algorithm selection

For many problems, no single parallelization istb&soss all
processor architectures and input sizes, types, daid. The
preference of one algorithm over another can dependroblem
size and data type [2]. Ideally, we would like @ompilers to be
able to: (1) detect that a program implements atiquaar
algorithm; and (2) synthesize an alternative paliaiition that
might be better suited for the underlying hardware.

However, it is extremely difficult to implement sucompiler
intelligence, particularly for problems having ntivial data
dependences. In the general case, it is imposBle?5]. This
motivates programming methodologies having a lepaqoe
relationship between the expression of the parptiegram and its
compilation, e.g., one in which the programmer Exy supplies
algorithmic alternatives and rules for guiding sttn among
them based upon problem type and target processor.

3.3 Resour ce scheduling

The challenges of mapping programs onto parallebviare
extend beyond algorithmic choice and granulariiyen when the
basic outline of an algorithm is a good fit for thederlying
machine model, an efficient scheduling of threads ane
processor can result in significant underutilization another.
This is exacerbated on contemporary GPUs, wherédndware
resources provisioned for each thread (registbiaesl memory,
etc.) are intimately intertwined with co-schedulinge., the
arrangement of threads within threadblocks andhofadblocks
within multiprocessor cores.

Logical threads are dispatched onto processor cbres
threadblock. The number of resident, active thrésaks per core
is limited by the core’s resources, namely the egate register
file, local shared memory, and scheduling contefsr example,
the NVIDIA GF100 architecture provisions 32K 32-bigisters,
48KB shared memory, and scheduling resources &&6lthreads
per core. The configuration space for thread braghs quite
large, including such alternatives as:

e Three resident 512-thread threadblocks (1536
threads/core), 16KB shmem per threadblock, 21 tegis
per thread

e Six resident 128-thread threadblocks (768 threads)¢c
8KB shmem per threadblock, 42 registers per thread
e Eight resident 64-thread threadblocks (512 threads),
6KB shmem per threadblock, 64 registers per thread

What should the program specify?  The performance
consequences are opaque. A higher number of ngsideeads
per core does not necessarily imply greater thrpughif
computation or memory is already saturated. Largsidency
also results in increased register pressure peadhand can result
in costly spills to off-chip memory. Having a largpumber of
small threadblocks can provide a greater diversity
instantaneous thread behavior for better corezatibn. The
same diversity, however, can be harder on read-aalghe
hierarchies. More resident threadblocks also resldbe amount
of shared memory available to each threadblock Ifmal
cooperation.

Furthermore, these co-scheduling relationships iaHpl
affect the expression of thread behavior withingoam text. In
particular, the degree of local parallelism affettie layout of
shared memory within which threads communicate.o@mhand,
we can encode these relationships directly withim &ernel
programs, having each thread dynamically computeynud the
derivative details it will need (e.g, offsets, d&s, etc.) from
parameters supplied by the host program. Alterabti we can
encode these relationships statically using thee tgystem,
allowing the much of this information to be complitg compile
time.

3.4 Reated work

Without precise analytical models for complex andtad
dependent scheduling interactions on specific tamgehitecture,
the automation of empirical performance tuniagt@tuning) is a
common approach for program optimization. The rignf
sequential code has largely focused on variousctspé adaptive
inlining and loop transformations. The former daorease the
scope and quality of program optimization and th#el can
improve the utilization of deep and diverse CPU heac
hierarchies. [9, 12, 32]

Performance tuning for parallel programs has typica
followed one of three methodologies. The first rpaia
parallelizing compiler with an autotuning framewddt mapping
sequential loop nests onto parallel hardware. ddwesiderations
for both parallelization and tuning are often tgerent to the
programmer, or minimally influenced via code antiota or
ancillary “recipes.” [26, 28]

The second approach employs a separate metalanguage
code synthesizer to assemble program specializatifsaom
fragments of an explicitly-parallel language. Sudmmeworks
are typicallyad hoc in nature and/or are constructed for specific
applications. [15, 16, 23]

Under the third methodology, the parallel programgni
language serves as its own metalanguage. Sequjaahd
Petabricks [2] are example languages that providsr town
mechanisms for expressing tunable parameters amght&a Our
policy-based approach also falls within this catggwe leverage
template features of the CUDA C++ type system forstructing
program text that is capable of manipulating itsi@empilation.

Our methodology has two important distinctions witthis
third category. The first is that we make useeddfective tuning
types across procedural interfaces to facilitat@gtimization of



CTA

70 4

o 65.1
2 60 -
°
2 g0 203 Sort
=]
8 1 1 1 1 1 A4 141 1 1 1 1 2 ;Ca“.
S 40 4 e Reduction
b Co
(a) Data-parallel threadblock decomposition (onetile per threadblock) g 30 Py
CTA, CTA, 'g 25.5
5
2 20
g 11 AT £ 121
H.LU.':J.IU.. 41.111.1 41.111.1 =J.I.LL= I,LLU.I I,LLU.I l,uu._ =J.LU..=JJIJ.I IJ.lu.. 41.111.1 =JJ.LL= .’LL“' I,LLU.I I,Llu.l IrlUl. I,LIJLI I,LLU.I =u.u__ ILUJ.. HJ,Ll“J‘LLl: =JJ_Ll; E 98
: | i ! £ 10 A
O O | NSO | O . 0 B o o . S 2.6 ———————— 70
A T T L W T T B T IR 0

(b) Threadblock serialization (each threadblock iteratively processes multiple tiles)

Fig. 1. Example threadblock decompositions for a data-fgEtahnsformation.
Tile sizeb=4 elements.

reusable library components. The second is thatsgethe same
type system for expressing tuning policy as wellf@sthe data
structures that govern the layout of shared memadiyus we can
express layout in terms of policy. This is parécly useful when

authoring cooperative algorithms where a tunablenber of

threads must communicate with each other througaresh
memory while adhering to architecture-specific suler avoiding

bank conflicts.

The practice of increasing the granularity of wpedformed
by threads and threadblocks is a common GPU pesiocm
optimization. The linear algebra implementatiorysMolkov et
al. employ register blocking to improve instruction level
parallelism by increasing the number of items Iycarocessed
per thread [31]. The global reduction implemewtadi by Harris
have threadblocks that process more than onedflénput data
[21]. Our prefix scan and sorting implementatiomsoke kernels
whose threadblocks scale with the number of GPUipratessor
cores [19, 20]. Similarly, the software graphigsetines by Aila
et al. [1] and Tzenget al. [29] implement long runningpersistent
threadblocks that interact through global work queues. Thisgra
investigates tunable granularity coarsening in tumtext of
performance portability and software reuse.

4 GRANULARITY COARSENING

This section illustrates two important applicatiasfsgranularity
coarsening:threadblock serialization and thread serialization.
The Back40 library of primitives makes extensive a$ policy-
based tuning to implement these two patterns.

4.1 Threadblock serialization

The CUDA programming model encourages data-parallel
decompositions where the number of threads, arslttreinumber

of threadblocks, scales with problem size. Figilluatrates this

for a simple data-parallel transformation (e.g.pyo Each
threadblock processes exactly one tile of datacéjly where the
number of data elemenisin a tile corresponds to the number of
threads in a threadblock. For a given problem iné 8 and
scheduling granularity, the kernel will launch a grid & = n/b
threadblocks.

Fig. 1b illustrates alternative threadblock decositpan for
the same data-parallel problem in which the numioér
threadblocks launched is constant. The tile-processing logic for
each threadblock wrapped within in a while-loop.h&i C is a

1 To avoid further overloading of the term “blockie usetile to describe
a block of input data that a threadblock is degigioeprocess to
completion before terminating or obtaining anothieck of input.

40128 60128

Grid size (threadblocks)

128 20128

Fig. 2. Instruction overhead vs. threadblock granularity
(GTX480)

fixed multiple of coresp, each threadblock is responsible for
serially processin@(n/(pb)) tiles. Becaus€ is O(p), the number
of logical threads scales with processor widthdadtof problem
size.

We illustrate the effectiveness of this techniqae 4 trivial
data-parallel “copy” kernel. Threads simply reau avrite their
32-bit elements from global input and output array$/e use
64M-element arrays, large enough to saturate theX48T
memory subsystem. Fig. 2 plots the dynamic in§tuoverhead
per input element as a function of the number oéatblocks
launched by the kerrfel We vary the threadblock count from the
minimum number needed to occupy the process@=180
threadblocks) to fully data-paralle¥/p = 64K threadblocks where
b=1024).

We observe that the computational overhead incsdasearly
with the number of threadblocks invoked.  With fewe
threadblocks, the computational savings from reduce
concurrency and increased serial processing arestatial.
Compared to the strictly data-parallel extreme loa tight hand
side, restricting the amount of concurrency to wWidth of the
processor reduces the overall computational wodkna57%.

Two factors contribute to these savings. Firsg thduced
number of logical threads lowers the overall thrsatlp
overhead. This includes instructions for loadirdwe tkernel
parameters into registers, computing the offset thie
threadblock’s first tile, the offset of the threado that tile, etc.
Second, the compiler can hoist operations out @& tite-
processing loop, further reducing the workloadipput element.

This threadblock serialization idiom is also particly
effective for recursive decompositions. Fig. 3astrates the
traditional recursive data-parallel decompositioor fparallel
reduction. Each threadblock computes a partialagon from its
tile of b elements. The host program further invokesedl
reduction kernels to reduce these partial redustioto a single
aggregate result.

However, GPUs are only efficient when the problére $s
large enough to saturate the processor. Thigédyrerue for the
interior of the reduction tree. For example, tbeand level of a
64M element reduction tree with branching factor1024
contains only 64K elements. Unfortunately the memo
subsystem for the GTX480 only saturates for inpatger than
8M elements. The second and third kernel invooatieave the
GPU undersubscribed. Only the first kernel instaisccapable of
fully utilizing the processor.

2 We normalize instruction counts per thread (aoepd to SIMD
instructions per warp).
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Fig. 4. Recursive, pair-wise parallelization of local trdbkbckreduction.
Lighter dataflow arrows indicate partials left ggisters

barrier

Fig. 5. Recursive, three-phase parallelization for locediyucing a tile ob =
64 elements when@nreadoiock= 16 andvsivp = 4. Lighter dataflow arrows

indicate partials left in registers.

As an alternative, Fig. 3b illustrates the threadkl
serialization idiom as applied to our reductionrepée [21]. In

the first kernel,C threadblocks are given an even share of input

tiles. Each threadblock sequentially processes titss,
maintaining the accumulated partial reduction llycantil its last
tile has been processed. Wh@ris a constant multiple g, a
single threadblock invoked by the second kernel gaickly
reduce theC partial reductions output by the first kernel. isTh
approach requires less global data movement arishéis the
inefficient part of parallel reduction as quickly possible.

The two-level threadblock serialization idiom exdsrio other
cooperative, recursive parallelizations. Fig. oallustrates the
effectiveness of threadblock serialization for theoperative
problems of global reduction, prefix sum, and muldy
partitioning (for radix sorting) [19, 20]. By onliynvoking as
many threadblocks as can be actively resident enptiocessor,
we demonstrate computational savings of 67% fonctadn, 42%
for prefix sum, and 27% for partitioning.

4.2 Thread serialization

In this subsection, we discuss the merits of graityl coarsening
for local cooperation with the threadblock. Wherpressed at
their finest granularity, the task dependences foany
cooperative  parallelizations comprise binary treesf
communication through shared memory spaces. Reduand
prefix sum are commonplace examples. At each tepeghe
expressed concurrency is geometrically decreasimy
increasing). To illustrate, Fig. 4 presents a niagppf pairwise
reduction onto parallel threads.

Despite
parallelization is quite inefficient on GPU arcluitere. Each of
the b-1 reduction operators has an operand that needseto
written, synchronized, and read from shared meméatiger
performing an operator, threads must also evalaatenditional
to determine whether they will be active in the saduent level.

its simplicity and abundant concurrencyjs th

For example, a 1024-thread threadblock require244Aread-
instructions to reduce a tile df=1024 elements.

A much better fit is the generic, three-phase acootibn
illustrated in Fig. 5. Each phase seeks to eiiherease the
amount of sequential work within a given storagassl (e.g.,
registers, shared memory, etc.) or exploit a pagicaspect of the
abstract machine model (e.g., lock-step threadrpssgwithin the
warp):

1) Seguential reduction in registers. This phase decouples
the tile sizeb from the number of threadSireadbiock
Each thread loads/pyreadniockitems. It is important that
this phase be wide enough to saturate the globalane
subsystem with requests.
sequentially reduced in registers without readteyind
barrier instructions.

2) Sequential reduction in shared memory. We place the
partials from the previous step into shared memory,
barrier, and then reduce the parallelism to the [3IM
width wg)yp Of the processor core. One warp then

serially rakes* over the shared partials for
PthreadblockWsivp ~ Steps  without  write  and  barrier
instructions.

3) Cooperative, warp-synchronous reduction. Finally, the
single raking warp performs a synchronization-figsr-
wise reduction in shared memory of the partial
reductions computed in the previous phase. Weoéxpl
the lock-step SIMD behavior of threads within tizene
warp to avoid explicit barrier synchronization.

This construction only requires one barrier-synoized
exchange through shared memory that is accompéyiedsingle

% The actual width of the final five reduction lesés the warp-width
wsimp=32, regardless of deactivated threads.

4 Raki ng [4] is a strategy for assigning a set of threatts process a much
larger data set. Each thread is assigned an é\an-of consecutive
inputs to process serially, i.e., the stride betwtseeads ip and the
stride between elements for a given thread is 1.

The loaded elements are



thread communication. We prefer to bind theserpatars after
empirically tuning for a specific problem and targechitecture.
We also apply the same thread-serialization teclasigfor

Listing 1. A straightforward kernel sub-procedure for threadks to
copy a tile of 32-bit floats from one global artayanother

Template parameters: None constructing local implementations of parallel ptegum. The
Formal par lange}?f s § g ability for parallel threads to cooperatively rasgeispace within
*  Clobalinput and output arragsin, d_out . shared data structures is a fundamental aspect acéligl

. Offsettile_offset into d_in/d_out of the tile to be copied . . X .
. Optional limitguarded_elements on the number of tile elements to co_m_putlng. FOI’.GPU ar_ch|tecture,_ prefix Sum is acmmore
copy efficient mechanism for implementing dynamic datacpment
Other: than atomic instructions [18]. As a result of #deserialization,

. Global variablehread_id for thread identifier

! " e the Back40 implementations of local prefix sum éitha 44%
. Global variablecta_size for threadblock-size in threads

reduction in dynamic instruction overhead from tleeursive

; _?fvi Ce_d void CopyTile( pairwise implementation within CUDPP [6].
oat *d_in,

30 foatdow 5 TUNING VIA THE TYPE SYSTEM

5 size_t guarded_el ements = cta_size) Our design idiom for tuning via the type systemsuSe+ support

6 { for template-based meta-programming to ease theleburof

; if (thread id < guarded_el ements) { granularity selection and algorithmic choice. Wanstruct our

o /) Load tile data par_allel algorithms such that they can be spe@dliby tuning

10 float data = pOIICy types.

11 din[tile offset + thread id]; By parameterizing kernel subroutines with policpdy, we

12 can author the “general shape” of an implementatleaving

13 /1 Store tile data , many of the performance-sensitive details unbourat. example,

1‘5‘ } d_out[tile offset + thread id] = data; we can use policy to specify the degree of paisitelto govern

16 ) algorithmic or threshold specialization, to dictateration and
unrolling, and for declaring local variable typescls as array
sizes and shared memory layouts. Kernel subraitoan be

Listing 2. A tuning policy type for data-parallel copy, follea by an reused by binding them with different tuning configtion

example parameterization of that type specializedafrge-problems of policies that co-optimize them for the specificlgeom at hand.

8-byte elements on the GF100 architecture. Because the policy is statically known to the cdarpiwe

1 // Tuning policy type often obviate the need for any runtime decisionimghvith each

2 tenplate < logical thread. The cumulative overhead of runtidecision-

3 /1 Probleminstance type paraneters making (e.g., how many loads to unroll) is par@éelyl costly on

4 typename T, GPU-like architectures having tens or hundreddiofisands of

2 Fnt ARCHl TECTURE, resident threads.

7 /1 Tunabl e paraneters H .

& int Loo TrREADS, 5.1 A simpleexample: data-parallel copy

9 int LOG LOAD_VEC Sl ZE, Consider data-parallel copy as a trivial examphkes one of the

i‘l’ :zf_éaofazaﬁff—rf—gggmﬁ = simplest stencil kernels, threads simply load et@meérom a

12 st CacheMbdi fier WRI TE. MODI FI ER global input arra_ty_and write them to equwal_entalmm_s within

13 bool VIORK_STEALI NG> output array. Listing 1 illustrates a “concretéé-4copying sub-

14 struct Policy; procedure in which a threadblock copies a tile &fb& floats.

15 Each thread loads and stores exactly one float.

16 // Exanple policy paraneterization tuned In practice, the ostensibly-simple copy operatiocorporates

17 /7 for 8 byte data, |arge-size probl ems quite a few tuning decisions that are opaque imseof their
18 typedef Policy<unsigned |long |ong, G100,

19 8, 7. 1, 0, Idi:cg st::cg, trues performance impact for any given architecture arablem type.
20 "Lar geProbl enPol i cysB: Lines 2-14 in Listing 2 illustrate a parametric éyRolicy that can
be specialized in the following tuning dimensions:

a) Thenumber of loads per thread per tile. This allows us

conditional for reducing the degree of parallelisAll other steps to increase the number of outstanding loads isbeéate
are free of conditionals, and the bulk of the reiuncoperators stores at the expense of increased register peessur
(first phase) are free of any shared memory overthé2ompared Reasonable configurations includ® 2', and 2 loads
with the pair-wise example, this three-phase catn only per thread per tile.
requires 1,440 thread-instructions to reduce a ¢ileb=1024 b) The number of items per load. Current NVIDIA GPUs
elements using a 128-thread threadblock wifyp=32, a savings support vector-loads of up to four component elesien
of 67%. Reasonable configurations include 2%, and 2 elements
This example of local reduction serves to illugrahe per vector load.
importance of expressing the “general shape” opeoation from c) The number of threads per threadblock. Reasonable
multiple algorithmic phases. However, we do nonhive bind configurations include powers-of-twos ranging fr@h
these phases to any particular widths and deptleh alathoring to 2'° threads.
our programs. In this example, the tile size,adi#ock size, and d) Work-stealing. As algorithmic variants, we can either:
warp size are the unbound tuning parameters thi#mnaiely (a) provide each threadblock with an even-shaiemit
dictate the number of steps to statically unrothephase. They tiles; or (b) allow threadblocks to “steal” tile$ work

also dictate the size and layout of shared mememsded for using coarse-grained atomic-addition.
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(NVIDIA GTX 480).

Listing 3. A generalized, policy-based kernel sub-procedure fo
threadblocks to copy a tile of elements from orobgl array to another.

Template parameters:
. Tuning policy typePolicy as per Listing 2
Formal parameters:
. Global input and output arragsin, d_out
. Offsettile_offset into d_in/d_out of the tile to be copied
. Optional limitguarded_elements on the number of tile elements to copy

. Device functiorLoadTileValid() for reading each thread’s tile portion
. Device functiorStoreTileValid() for writing each thread’s tile portion

1 tenpl ate <typename Policy>

2 __device__ void CopyTile(

3 typename Policy:: T *d_in,

4 typenanme Policy::T *d_out,

5 typenane size_t tile_offset,

6 typenanme size_t guarded_el ements =
7 Pol i cy:: ELEMENTS_PER TI LE)

8

9

/1 Tile data

10 typenanme Policy:: T

11 data[1 << Policy::LOG LOADS PER TI LE]

12 [1 << Policy::LOG LOAD VEC SI ZE] ;

13

14 /1 Load tile

15 LoadTi | eVal i d<Pol i cy>(

16 data, d_in + tile_offset, guarded_el enents);
17

18 /1 Store tile

19 StoreTi | eVal i d<Pol i cy>(

20 data, d_out + tile_offset, guarded_el enents);
21}

e) Caching directives. These modifiers affect cache
behavior during loads and stores.

GPUs expose up to four variants: default cachingy2at

and L1 levels; no caching; cache in global L2 using

smaller cache lines; and tagging for preferentiatsn.

Listing 3 illustrates a templated copy subroutimat expresses the
“general shape” of tile-copying. This procedured bound to a
specific type of copy-element. In addition, ealcteéd loads and
stores a tunable number of elements. Such tunatgilsl are
encapsulated within the template parameter typelicy.
Furthermore, Listing 2 (lines 18-20) presents aangXe policy
type instance that has been tuned for copying lasteof 8-byte
elements.
Fig. 6
performance

illustrates the diversity of the correspordi
landscape for the current

Current NVIDIA

NVIDIA GF100

Table 1. Max achievable DRAM bandwidth (10° Bytes/s)

GTX480 GTX280 9800 GTX+
Unidirectional (even-share) 163.4 135.6 67.8
Unidirectional (steal) 168.6 63.6 42.6
Bidirectional (even-share) 153.6 125.4 61.7
Bidirectional (steal) 163.7 85.3 55.5

architecture (GTX480). These tuning options enwateera
configuration space of 1,728 tuning variants petadsgpe, per
problem size. We evaluate these specializatiomsafgair of
“large” and “small” representative workloads: 128M8nd
128KB. Furthermore, we explore the configuratipace for 1-
byte, 2-byte, 4-byte, and 8-byte data types fohgaoblem size.
We normalize the throughputs of each tuning cométian
against the maximum observed for its problem simt plot the
resulting slowdown histograms.

The large problem size (Fig. 6a) is representativdatasets
large enough to saturate the memory subsystengemeral, the
GTX480 is somewhat forgiving at this problem size,, it is
skewed to the right. On average, 25% of all camfions
achieve more than 90% of the maximum achievableutjtiput
(164 GB/s). However, we observe that it is rekdiivmuch more
difficult to achieve this performance when copyirdgbyte
characters. Only 2% of configurations achieve ntbesm 90% of
maximum on 1B problem instances.

The performance for the small problem size (Fig.i§bnuch
more diverse. Only 6% of all specializations falthin 90% of
the maximum throughput (65 GB/s). For the varipusblems
discussed throughout this paper, we generally gbstvat it is
comparatively harder to find tuning configuraticthat are well-
suited to small, fleeting workloads.

We also observed the configurations correspondinghe
straightforward implementation specified in Listidgwere not
particularly competitive.  For the large 128MB ples
instances, the best 4-byte, 1-load, vector-1 conditions perform
at less than 90% of maximum-achievable. For thallsti28KB
instances, these configurations only muster 65%nakimum-
achievable. It is not obvious to the programmeat tithis
“concrete” implementation would perform so poorly.

Finally, we use this tunable kernel to determines th
maximum-achievable DRAM bandwidths for each of tiuee of
our evaluation GPUs (GTX480, GTX280, and 9800 GTXWe
use these throughputs, listed in Table 1, to etaltlze absolute
performance of memory-bound implementations.



Table 2. Performance-portability landscape benchmarks

Tunil i Total //
Benchmark Kernel tuning dimensions uning mf'ﬂgs per ota Sa'."p N
problem instance evaluations
Copy transform Copy: a,b,cde 1,728 124,416
Reduction Upsweep:  3,b, ¢, d 8,748 104,976
Spine: a, b, c
Upsweep: a,b,c
Prefix sum Spine: a,b,c 157,464 11,337,408
Downsweep: a,b,c
Upsweep: a,b,c
Reduce-by-key Spine: a,b,c 157,464 11,337,408
Downsweep: a,b,c
2 q 2
Table 3. Between-configs slowdown variance (s°g)

GTX 480 GTX 280 9800 GTX+ All GPUs

Copy 0.52 0.08 0.48 0.40

Reduction

0.74 0.15 0.31 0.41

Prefix sum 0.58 0.42 0.31 0.83

Reduce-by-key 0.53 0.38 0.25 0.91

Table 4. Within-configs slowdown variance (s*w)

GTX480 GTX280 9800 GTX+ All GPUs

Copy 0.03 0.04 0.14 0.07

Reduction 0.03 0.04 0.11 0.06

Prefix sum 0.03 0.02 0.09 0.06

Reduce-by-key 0.01 0.01 0.03 0.02

5.2 Analysis of performance landscape across
GPU architecture

In this section, we explore the cumulative tuniagdscape for
several data-parallel and cooperative problems sactbe last
three generations of NVIDIA GPU architecture. @ualuation is
comprised of the following four benchmark problentepy-
transform, reduction, prefix sum, and reduce-by-key®. Global
copy is the simplest performance proxy for any mentmund
data parallel transformation. Prefix sum is a gerfance proxy
for kernels that compute recurrence relations atitmn data
(e.g., sorting). Reduce-by-key is a performanaxyffor dataset
contraction (e.g., list-compaction and duplicaterogal) and can
be used to implement map-reduce computation (aftgrping and
sorting stages).

Table 2 lists the kernels that comprise each beadkrand
the dimensions along which we can tune each kernEbr
example, theeduce-by-key benchmark has three kernels, each
which can tuned by loads-per-thread, items-per;laad number-
of-threads-per-threadblock, (b, andc from the previous section).
With three kernels and 54 tuning specializations lggnel, the
benchmark has an overall tuning domain of 157,46dinty
configurations.

Our investigation evaluates how different tuningliges
respond to different problem instances (where ®lpro instance
is a specific combination of data type, problenesiand GPU
architecture). We evaluate the performance of easting
configuration across a sample space of 72 problestances
constructed from combinations of the following:

e Four data types (1-byte, 2-byte, 4-byte, and 8-byte
elements)

of

5 Given a list of key-value pairs, reduce-by-kegtglogous to a
segmented reduction over the values where the segraee defined by
regions of consecutive, identical keys.

e Six problem sizes (128 KB, 512 KB, 2MB, 8MB, 32MB,
and 128 MB)

e Three GPU architectures (NVIDIA GF100, GT200, G92
represented by GTX480, GTX280, and 9800 GTX+
GPUs)

We are interested in gauging how performance varahseen
configurations as well asvithin configurations. These two
metrics intuitively correspond to the “strength’daftonsistency”
of individual tuning configurations, respectively.

We normalize our performance samples to the intgf4]
so that we may generalize behavior across probtstarices. For
every problem instance, we identify the tuning daqunfation that
provides the best sample performance. (For exametiicing
128 MB of 4-byte integers on GT200 maximally prateat 169
GB/s.) We then normalize the performance sampleslio
configurations for that problem instance in ternfsrelative
slowdown against this “best” performance.

We use the statistical metri¢®tween-group variance (Sg)
and within-group variance (s3) for analyzing the diversities of
configuration strength and consistency, respectiy&0]. The
between-group variance is a measure of the vaitiabdf
configuration means around the grand mean. Theirwiroup
variance is a weighted average of configurationiavee, with
weights determined by the number of problem ingtas@mnples in
each configuration.

Between-group analysis. Table 3 and Table 4 present the
between-group and within-group variances, respelgtiv The
large ratios of&’s/s%y indicate that the broad majority of overall
variation between pairings of configurations andobbem
instances is due to differendestween configurations, i.e., certain
configurations are innately better or worse thahewt. The
performance-slowdown histograms in Fig. 7 graphidilustrate
the ample performance variation amongst tuning igarditions
by binning configurations by their average slowdown

Furthermore, Table 3 also reveals that some anthites are
relatively more pliant than others. For examplee tariances
among tuning configurations are much lower for peab
instances on the GTX280 than for the newer GTX#8@ticularly
for thereduction benchmark.

Within-group analysis. Despite being dwarfed by between-
groups variance, the within-groups variare’g, is also fairly
significant. For example, the within-groups dewats, for
prefix sum across all GPUs i5/0.6 = 24%. This implies that
performance is also strongly related to problentaimse, and that
it will be relatively difficult to find tuning confurations that are
universally better than others.

The histograms in Fig. 7 corroborate the absenctumihg
configurations that perform well across the engmenple space of
problem instances. “Well-rounded” tuning configimas do not
exist. For example, no single configuration fmpy averages
more than 83% of the maximum-achievable performaamress
problem instances. Foeduction, prefix-sum, andreduce-by-key,
the best all-purpose configurations only averag#,733%, and
83% of what we can maximally achieve.

5.3 Effectiveness of auto-tuning

For large saturating problem sizes, we would like memory-
bound problems (namelgopy, reduction, and prefix sum) to

proceed at the maximum-achievable DRAM bandwidthefach
device. Because of the heavily overlapped nattitheoGPU, we
would expect that all memory-bound specializatiomaild yield

equal performance. Table 5 reveals this not tahieecase. It
presents the average bandwidth utilization acroaisings of
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Fig. 7. Performance histograms of tuning configurationesgth.” Configurations are binned by their harnsanean slowdown across all problem
instances. (For a specific problem instance, thedbwn for a given tuning configuration is relatieethe maximum performance achieved by any

configuration on that problem instance.)

Table 5. Average bandwidth utilization of all 128MB

tuning configurations

GTX480 GTX280 9800 GTX+
Copy 0.72 0.43 0.45
Reduction 0.61 0.32 0.35
Prefix sum 0.59 0.46 0.47
Reduce-by-key 0.31 0.16 0.16

configurations with 128MB problem instances, noiige to the
DRAM bandwidth presented in Table 1. The
implementations that should be bandwidth-boundist problem
size are nowhere near maximum bandwidth utilization

However, our autotuning search is quite effectivdirading
specific configurations that perform at peak or riseak
bandwidth. Selecting among only the
configurations for each of the 128MB problem ins&s) Table 6
shows that we can identify policy configurationstttperform
exceptionally well for each data type (1B — 8B)vek for our
compute-bound problemreduce-by-key), our best-performing
configurations are more than twice as fast.

We further illustrate the need for specializatigndomparing
our tuned global reduction kernels against thosiged by the
Thrust library of GPU primitiveg27]. To this point, we have
emphasized the mediocre performance of our avepaggram
variants.  This raises the question of whether awverage
specializations are representative of concreteé@mphtations “in
the wild.” The Thrust implementation of global weton is a
good point of comparison because it shares the saeeall
parallelization strategy.

Fig. 8 illustrates our autotuned reduction perfaroe
advantage over the Thrust implementation for baturating
128MB and fleeting 128KB problem instances. Forgéda
GF100-based problems instances, the Thrust perfaresaalign
with our average configuration performance. Inatieh, our
tuned specializations achieve a harmonic mean sipeefi1.6x.

three

best-performing

Table 6. Average bandwidth utilization of best 128MB

tuning configurations

GTX480 GTX280 9800 GTX+
Copy 1.00 0.99 0.99
Reduction 0.96 0.88 0.95
Prefix sum 0.97 0.97 0.94
Reduce-by-key 0.67 0.38 0.33

Their large-problem performance is relatively mugtter for the
older GT200 and G92 architectures. We only achietéx and
1.08x speedups for those GPUs, respectively.

Fig. 8b illustrates the importance of autotuning fmall
problem sizes. For this subset of problem instanttee Thrust
performance is representative of our grand-mearfigioation
slowdown of 0.6 across all reduction problems. rdlation, our
tuned specializations achieve harmonic mean spsedfi2.4x,
2.6x, and 3.9x for the GF100, GT200, and G92 aschires,
respectively.

6 CONCLUSION

In constructing the Back40 library of high perfoorma CUDA
primitives, it became clear that “concrete” implenaions were
simply not performance portable. Our tuning anedylustrated
the dire performance portability landscapes of sypcbhgram
instances, showing them to be incapable of deligergjood
performance across the domain of problem instatte®g might
be expected to address. A recurring observatighadifficulty
of achieving good performance from a single impletagon on
both large, saturating workloads and small, flegtiorkloads.

To achieve performance portability, we developedesign
methodology fompolicy-based tuning where reusable components
express the “general shape” of their solution, ilgwnany of the
performance sensitive details unbound. By incatiog policy
types within procedural interfaces, we enable th@mtimization
reusable software components with the enclosingndter
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Fig. 8. Global reduction performance comparison betweeraatotuned and the “concrete” Thrust implementation

application. We found the C++ type system to befulsas a
mechanism for specializing code generation via tatap
metaprogramming, particularly as many tuning deaisi affect
data structure and layout within shared memory.r &uotuning
results demonstrate the ability to consistenthcali®r excellent
specializations for the specific problem instanickaad.

An important application of such specialization tke
selection of the proper granularity of concurrenoriv We
showed that parallelizations that achieve a prbpé&nce between
serial and parallel phases of computation providmificantly
better efficiency and performance than those thmaply express
all available concurrency.
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