
Policy-based Tuning for Performance Portability
and Library Co-optimization

Duane Merrill
NVIDIA Corporation

Santa Clara
California

USA
dumerrill@nvdia.com

Michael Garland
NVIDIA Corporation

Santa Clara
California

USA
mgarland@nvidia.com

Andrew Grimshaw
University of Virginia

Charlottesville
Virginia

USA
grimshaw@virginia.edu

ABSTRACT
Although modular programming is a fundamental software
development practice, software reuse within contemporary GPU
kernels is uncommon. For GPU software assets to be reusable
across problem instances, they must be inherently flexible and
tunable. To illustrate, we survey the performance-portability
landscape for a suite of common GPU primitives, evaluating
thousands of reasonable program variants across a large diversity
of problem instances (microarchitecture, problem size, and data
type). While individual specializations provide excellent
performance for specific instances, we find no variants with
“universally reasonable” performance.

In this paper, we present a policy-based design idiom for
constructing reusable, tunable software components that can be
co-optimized with the enclosing kernel for the specific problem
and processor at hand. In particular, this approach enables
flexible granularity coarsening which allows the expensive
aspects of communication and the redundant aspects of data
parallelism to scale with the width of the processor rather than the
problem size. From a small library of tunable device subroutines,
we have constructed the fastest, most versatile GPU primitives for
reduction, prefix and segmented scan, duplicate removal,
reduction-by-key, sorting, and sparse graph traversal.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent programming;
D.2.13 [Software Engineering]: Reusable Software; D.3.4
[Programming Languages]: Processors – optimization

General Terms
Performance, Design, Languages

Keywords
Performance, performance portability, software reuse, library
design, auto tuning, policy, metaprogramming

1 INTRODUCTION
Parallel computing is fundamentally motivated by performance.
However, absolute performance is not always an exclusive design
objective. Sustainable software development also values design
practices that emphasize program modularity, software reuse, and
other productivity enhancing methodologies.

It can be difficult to develop modular programs for massively
parallel machines like GPUs. Achieving high performance while
maintaining good software abstractions is often challenging. The

addition of parallelism creates further complexity. Despite the
existence of many libraries of reusable CUDA kernels, we see
little reuse of components within kernels themselves [22].
Furthermore, these libraries often require re-tuning effort for new
GPU architectures. As GPUs evolve and existing programs
mature, we are increasingly motivated to simultaneously satisfy
the design objectives of (1) absolute performance and (2)
portability and reuse, despite their often adversarial relationship.

We believe the dearth of reusable kernel components
corresponds to a lack of performance portability. The absolute
performance of many kernels is significantly influenced by
problem type, problem size, and specific GPU microarchitecture.
As a consequence, performance-sensitive applications derive little
value from libraries of reusable device subroutines that cannot be
tailored for the specific problem and processor at hand. In this
paper, we present a software design methodology for policy-based
tuning where authors of reusable software components express the
“general shape” of their solutions, leaving many of the
performance sensitive details unbound.

This approach was developed for the Back40 library of GPU
computing [3]. To our knowledge, Back40 provides the fastest
and most performance-portable implementations of reduction,
prefix scan, segmented scan, duplicate removal, histogram,
reduce-by-key, sorting of numeric primitives, and sparse graph
traversal. These primitives are all constructed from a core library
of reusable, tunable device subroutines for common kernel
activities (e.g., workload management, data movement, variants of
local reduction and prefix scan, etc.).

We motivate our policy-based design methodology with an
examination of performance portability landscapes and the
performance benefits of implementing flexible algorithmic
granularity.

1.1 Investigation of performance portability
We evaluate the performance portability landscapes for the
following archetypal sequence-processing primitives: copy-
transform, reduction, prefix scan, and reduce-by-key. We explore
the tuning spaces for these problems across a variety of data types,
problem sizes, and NVIDIA microarchitecture (GF100, GT200,
and G92). Our results show:

• A large performance variation among program instances
representative of manually authored code.

• We can identify optimal or near-optimal program
variants for many combinations of problem type and
microarchitecture.

• No single program variant provides “universally
reasonable” performance across all data types, problem

sizes, and architectures. While we expected over-fitting
of program variants to individual problem instances, we
were surprised by the lack of well-rounded program
variants.

1.2 Policy-based tuning
These empirical observations motivate our software design
methodology centered on policy-based tuning. The premise of
policy-based tuning is to insulate both programmers and reusable
software components from cementing implementation decisions
having opaque performance consequences. By leaving such
decisions unbound within the program text, we construct generic
implementations that can later be specialized for specific problem
instances and target microarchitectures. This allows us to obtain
excellent absolute performance as well as performance portability
from reusable software components.

The approach we describe is based on C++
metaprogramming. More specifically, our methodology
incorporates procedural interfaces having parametric policy types.
The text for a given procedure refers to these reflective policy
parameters to describe how the compiler should expand, couple,
and select from various phases of sequential and parallel
computation. This provides us with the interface flexibility to
adapt reusable components within the context of the enclosing
implementation, problem, and processor.

1.3 Flexible granularity coarsening
Our policy-based tuning methodology was principally developed
to permit flexible granularity coarsening, the expression of
programs that accommodate a sliding scale of parallel versus
sequential computation. By limiting the amount of concurrency
expressed by the program, we force the costs of thread
cooperation and parallelism to scale with the width of the
processor rather than the problem size.

Flexible granularity can complicate parallel programs because
the program text must combine code for both serial and parallel
phases. Furthermore, we want to leave unbound both: (1) the
number of steps each phase is to be run; and (2) the width of
parallelism for each phase. Policy-based tuning allows us to
specialize a program text by adapting the amount of exposed
concurrency to individual processors, including those that may not
yet be known.

Our work illustrates the benefit of matching appropriate task
granularities with the width of the underlying hardware. At the
global scheduling level, we show that increasing the granularity of
work performed by threadblocks provides computational savings
of 67% for global reduction, 42% for global prefix sum, and 27%
for radix sorting passes. At the local level, increasing the
sequential workloads of individual threads yields computational
savings of 67% and 44% for intra-threadblock reduction and scan,
respectively.

2 GPU COMPUTING
Contemporary processor architecture provides increasing
parallelism in order to deliver higher throughput while
maintaining energy efficiency. Modern GPUs are at the leading
edge of this trend, provisioning tens of multiprocessor cores per
chip, each of which manages on the order of a thousand hardware-
scheduled threads. Each core employs data parallel SIMD (single
instruction, multiple data) techniques in which a single instruction
stream is executed by a fixed-size grouping of threads called a
warp. A threadblock is a group of threads that will be co-located
on the same core and share a local on-chip scratch memory.

Parallel threads are used to execute a single program, or kernel.
Coherence within shared memory spaces follows the bulk-
synchronous parallel model [30].

3 TUNING AS AN EXPLICIT DESIGN
METHODOLOGY

We can generalize the inherent challenges of parallel
programming as stemming from two related sources: expressing
parallelism, and mapping the expression of parallelism onto real
hardware. The former encapsulates the creative aspects of
devising and authoring a clean, concise, and correct description of
parallel computation. The latter comprises the practical aspects of
compiling and scheduling such descriptions of computation and
data movement onto the underlying hardware for efficient
execution.

The twin burdens of expression and mapping have historically
fallen separately upon the shoulders of the programmer and the
compiler/runtime, respectively. For sequential programs,
compilers and dynamic CPU pipelines have largely succeeded in
providing performance-portability without explicit guidance from
the programmer.

However, the effectiveness of this arrangement is unlikely to
continue as contemporary processor architecture embraces ever-
increasing parallelism. As we discuss in this section, a philosophy
of complete insulation from the mapping process is less useful for
achieving both portability and performance. At worst, it is
counterproductive. In particular, there are three aspects of
mapping that would benefit from explicit guidance from the
programmer: variable concurrency, algorithm selection, and
resource scheduling.

3.1 Variable concurrency
Parallel computing adds an important facet to the process of
mapping programs onto hardware: the amount of concurrency
expressed by the program text. Many programming abstractions
are designed for the program to specify all available concurrency.
For example, SISAL [17], MultiLisp [13], and VHDL [14] are
well-known declarative languages for expressing the data
dependences that expose which computations can proceed in
parallel. Similarly, the abstractions for data parallelism within
frameworks such as OpenMP [7], CUDA [5], and MapReduce [8]
require the specification of independent operations to be
performed on every data element.

In this vein, GPU programmers are encouraged to construct
data-parallel task decompositions that instantiate a unique logical
thread for every data item. The abstract machine model supports
this idiom through thread virtualization, i.e., the decoupling of
logical threads from hardware threads. This idiom simplifies
development: programmers need only express a single algorithmic
strategy that encodes the smallest granularity of parallel
computation.

On the surface, this idiom is also attractive for mapping
programs onto hardware. First, the approach ensures that the
concurrency expressed by a given program is both maximal and
scales with problem size. These two properties are useful for
achieving strong and weak scaling, respectively. Second, the
idiom provides good portability. It abstracts away the physical
details of processor cores and SIMD widths that may vary across
GPUs. Finally, the oversubscription of processing elements with
short-lived tasks helps ensure good load balancing and overall
utilization.

However, this style of thread decomposition has important
performance consequences for cooperative problems, i.e.,

parallelizations with sharing dependences. When logical threads
scale with input size, so does the amount of communication
through memory. Communication between logical threads often
results in the same data being loaded back into registers on the
same processor core, yet at the expense of many clock cycles and
costly synchronization for correctness. We would prefer not to
move such data at all. This implies that communication overhead
should scale with physical processing elements, not problem size.

Furthermore, a portion of the overall instruction workload also
scales with logical threads. Local computation within a
threadblock typically involves computing conditional predicates,
performing offset calculations, initializing local variables and
shared memory, etc. Many of these operations are identical across
threadblocks. For example, thread ti in one threadblock is likely
to have the same activation schedule and access the same shared
memory locations as thread ti in all other threadblocks. These
identical instructions are effectively redundant when they are
ultimately executed on the same SIMD lanes. When the number
of threadblocks scales with problem size, this redundant
computation does as well.

We can reduce the presence of unnecessary computation and
communication by increasing the granularity, i.e., amount of serial
work performed by each thread, warp, and threadblock. Our goal
is to construct parallelizations where logical threads are a multiple
of machine width, not problem size.

3.2 Algorithm selection
For many problems, no single parallelization is best across all
processor architectures and input sizes, types, and data. The
preference of one algorithm over another can depend on problem
size and data type [2]. Ideally, we would like our compilers to be
able to: (1) detect that a program implements a particular
algorithm; and (2) synthesize an alternative parallelization that
might be better suited for the underlying hardware.

However, it is extremely difficult to implement such compiler
intelligence, particularly for problems having non-trivial data
dependences. In the general case, it is impossible [24, 25]. This
motivates programming methodologies having a less opaque
relationship between the expression of the parallel program and its
compilation, e.g., one in which the programmer explicitly supplies
algorithmic alternatives and rules for guiding selection among
them based upon problem type and target processor.

3.3 Resource scheduling
The challenges of mapping programs onto parallel hardware
extend beyond algorithmic choice and granularity. Even when the
basic outline of an algorithm is a good fit for the underlying
machine model, an efficient scheduling of threads on one
processor can result in significant underutilization on another.
This is exacerbated on contemporary GPUs, where the hardware
resources provisioned for each thread (registers, shared memory,
etc.) are intimately intertwined with co-scheduling, i.e., the
arrangement of threads within threadblocks and of threadblocks
within multiprocessor cores.

Logical threads are dispatched onto processor cores by
threadblock. The number of resident, active threadblocks per core
is limited by the core’s resources, namely the aggregate register
file, local shared memory, and scheduling contexts. For example,
the NVIDIA GF100 architecture provisions 32K 32-bit registers,
48KB shared memory, and scheduling resources for 1,536 threads
per core. The configuration space for thread blocking is quite
large, including such alternatives as:

• Three resident 512-thread threadblocks (1536
threads/core), 16KB shmem per threadblock, 21 registers
per thread

• Six resident 128-thread threadblocks (768 threads/core),
8KB shmem per threadblock, 42 registers per thread

• Eight resident 64-thread threadblocks (512 threads/core),
6KB shmem per threadblock, 64 registers per thread

What should the program specify? The performance
consequences are opaque. A higher number of resident threads
per core does not necessarily imply greater throughput if
computation or memory is already saturated. Larger residency
also results in increased register pressure per thread and can result
in costly spills to off-chip memory. Having a large number of
small threadblocks can provide a greater diversity of
instantaneous thread behavior for better core utilization. The
same diversity, however, can be harder on read-only cache
hierarchies. More resident threadblocks also reduces the amount
of shared memory available to each threadblock for local
cooperation.

Furthermore, these co-scheduling relationships explicitly
affect the expression of thread behavior within program text. In
particular, the degree of local parallelism affects the layout of
shared memory within which threads communicate. On one hand,
we can encode these relationships directly within our kernel
programs, having each thread dynamically compute many of the
derivative details it will need (e.g, offsets, strides, etc.) from
parameters supplied by the host program. Alternatively, we can
encode these relationships statically using the type system,
allowing the much of this information to be computed at compile
time.

3.4 Related work
Without precise analytical models for complex and data-
dependent scheduling interactions on specific target architecture,
the automation of empirical performance tuning (autotuning) is a
common approach for program optimization. The tuning of
sequential code has largely focused on various aspects of adaptive
inlining and loop transformations. The former can increase the
scope and quality of program optimization and the latter can
improve the utilization of deep and diverse CPU cache
hierarchies. [9, 12, 32]

Performance tuning for parallel programs has typically
followed one of three methodologies. The first pairs a
parallelizing compiler with an autotuning framework for mapping
sequential loop nests onto parallel hardware. The considerations
for both parallelization and tuning are often transparent to the
programmer, or minimally influenced via code annotation or
ancillary “recipes.” [26, 28]

The second approach employs a separate metalanguage or
code synthesizer to assemble program specializations from
fragments of an explicitly-parallel language. Such frameworks
are typically ad hoc in nature and/or are constructed for specific
applications. [15, 16, 23]

Under the third methodology, the parallel programming
language serves as its own metalanguage. Sequoia [11] and
Petabricks [2] are example languages that provide their own
mechanisms for expressing tunable parameters and variants. Our
policy-based approach also falls within this category: we leverage
template features of the CUDA C++ type system for constructing
program text that is capable of manipulating its own compilation.

Our methodology has two important distinctions within this
third category. The first is that we make use of reflective tuning
types across procedural interfaces to facilitate co-optimization of

reusable library components. The second is that we use the same
type system for expressing tuning policy as well as for the data
structures that govern the layout of shared memory. Thus we can
express layout in terms of policy. This is particularly useful when
authoring cooperative algorithms where a tunable number of
threads must communicate with each other through shared
memory while adhering to architecture-specific rules for avoiding
bank conflicts.

The practice of increasing the granularity of work performed
by threads and threadblocks is a common GPU performance
optimization. The linear algebra implementations by Volkov et
al. employ register blocking to improve instruction level
parallelism by increasing the number of items locally processed
per thread [31]. The global reduction implementations by Harris
have threadblocks that process more than one tile1 of input data
[21]. Our prefix scan and sorting implementations invoke kernels
whose threadblocks scale with the number of GPU multiprocessor
cores [19, 20]. Similarly, the software graphics pipelines by Aila
et al. [1] and Tzeng et al. [29] implement long running, persistent
threadblocks that interact through global work queues. This paper
investigates tunable granularity coarsening in the context of
performance portability and software reuse.

4 GRANULARITY COARSENING
This section illustrates two important applications of granularity
coarsening: threadblock serialization and thread serialization.
The Back40 library of primitives makes extensive use of policy-
based tuning to implement these two patterns.

4.1 Threadblock serialization
The CUDA programming model encourages data-parallel
decompositions where the number of threads, and thus the number
of threadblocks, scales with problem size. Fig. 1a illustrates this
for a simple data-parallel transformation (e.g., copy). Each
threadblock processes exactly one tile of data, typically where the
number of data elements b in a tile corresponds to the number of
threads in a threadblock. For a given problem of size n and
scheduling granularity b, the kernel will launch a grid of C = n/b
threadblocks.

Fig. 1b illustrates alternative threadblock decomposition for
the same data-parallel problem in which the number of
threadblocks launched C is constant. The tile-processing logic for
each threadblock wrapped within in a while-loop. When C is a

1 To avoid further overloading of the term “block”, we use tile to describe

a block of input data that a threadblock is designed to process to
completion before terminating or obtaining another block of input.

fixed multiple of cores p, each threadblock is responsible for
serially processing O(n/(pb)) tiles. Because C is O(p), the number
of logical threads scales with processor width instead of problem
size.

We illustrate the effectiveness of this technique for a trivial
data-parallel “copy” kernel. Threads simply read and write their
32-bit elements from global input and output arrays. We use
64M-element arrays, large enough to saturate the GTX480
memory subsystem. Fig. 2 plots the dynamic instruction overhead
per input element as a function of the number of threadblocks
launched by the kernel2. We vary the threadblock count from the
minimum number needed to occupy the processor (8p=120
threadblocks) to fully data-parallel (n/b = 64K threadblocks where
b=1024).

We observe that the computational overhead increases linearly
with the number of threadblocks invoked. With fewer
threadblocks, the computational savings from reduced
concurrency and increased serial processing are substantial.
Compared to the strictly data-parallel extreme on the right hand
side, restricting the amount of concurrency to the width of the
processor reduces the overall computational workload by 57%.

Two factors contribute to these savings. First, the reduced
number of logical threads lowers the overall thread-setup
overhead. This includes instructions for loading the kernel
parameters into registers, computing the offset of the
threadblock’s first tile, the offset of the thread into that tile, etc.
Second, the compiler can hoist operations out of the tile-
processing loop, further reducing the workload per input element.

This threadblock serialization idiom is also particularly
effective for recursive decompositions. Fig. 3a illustrates the
traditional recursive data-parallel decomposition for parallel
reduction. Each threadblock computes a partial reduction from its
tile of b elements. The host program further invokes logbn - 1
reduction kernels to reduce these partial reductions into a single
aggregate result.

However, GPUs are only efficient when the problem size is
large enough to saturate the processor. This is rarely true for the
interior of the reduction tree. For example, the second level of a
64M element reduction tree with branching factor b=1024
contains only 64K elements. Unfortunately the memory
subsystem for the GTX480 only saturates for inputs larger than
8M elements. The second and third kernel invocations leave the
GPU undersubscribed. Only the first kernel instance is capable of
fully utilizing the processor.

2 We normalize instruction counts per thread (as opposed to SIMD

instructions per warp).

(a) Data-parallel threadblock decomposition (one tile per threadblock)

(b) Threadblock serialization (each threadblock iteratively processes multiple tiles)

Fig. 1. Example threadblock decompositions for a data-parallel transformation.
Tile size b=4 elements.

Fig. 2. Instruction overhead vs. threadblock granularity
(GTX480)

til
e

…

CTA0 CTAn/b-1

CTA0

til
e …

CTAp-1

46.3

65.1

12.1

25.5

9.8

2.6 7.0

0

10

20

30

40

50

60

70

128 20128 40128 60128

T
h

re
a

d
-i

n
st

ru
ct

io
n

s
p

e
r

in
p

u
t

e
le

m
e

n
t

Grid size (threadblocks)

Sort

Scan

Reduction

Copy

As an alternative, Fig. 3b illustrates the threadblock
serialization idiom as applied to our reduction example [21]. In
the first kernel, C threadblocks are given an even share of input
tiles. Each threadblock sequentially processes its tiles,
maintaining the accumulated partial reduction locally until its last
tile has been processed. When C is a constant multiple of p, a
single threadblock invoked by the second kernel can quickly
reduce the C partial reductions output by the first kernel. This
approach requires less global data movement and finishes the
inefficient part of parallel reduction as quickly as possible.

The two-level threadblock serialization idiom extends to other
cooperative, recursive parallelizations. Fig. 2 also illustrates the
effectiveness of threadblock serialization for the cooperative
problems of global reduction, prefix sum, and multi-way
partitioning (for radix sorting) [19, 20]. By only invoking as
many threadblocks as can be actively resident on the processor,
we demonstrate computational savings of 67% for reduction, 42%
for prefix sum, and 27% for partitioning.

4.2 Thread serialization
In this subsection, we discuss the merits of granularity coarsening
for local cooperation with the threadblock. When expressed at
their finest granularity, the task dependences for many
cooperative parallelizations comprise binary trees of
communication through shared memory spaces. Reduction and
prefix sum are commonplace examples. At each timestep, the
expressed concurrency is geometrically decreasing (or
increasing). To illustrate, Fig. 4 presents a mapping of pairwise
reduction onto parallel threads.

Despite its simplicity and abundant concurrency, this
parallelization is quite inefficient on GPU architecture. Each of
the b-1 reduction operators has an operand that needs to be
written, synchronized, and read from shared memory. After
performing an operator, threads must also evaluate a conditional
to determine whether they will be active in the subsequent level.

For example, a 1024-thread threadblock requires 4,224 thread-
instructions3 to reduce a tile of b=1024 elements.

A much better fit is the generic, three-phase construction
illustrated in Fig. 5. Each phase seeks to either increase the
amount of sequential work within a given storage class (e.g.,
registers, shared memory, etc.) or exploit a particular aspect of the
abstract machine model (e.g., lock-step thread progress within the
warp):

1) Sequential reduction in registers. This phase decouples
the tile size b from the number of threads pthreadblock.
Each thread loads b/pthreadblock items. It is important that
this phase be wide enough to saturate the global memory
subsystem with requests. The loaded elements are
sequentially reduced in registers without read, write, and
barrier instructions.

2) Sequential reduction in shared memory. We place the
partials from the previous step into shared memory,
barrier, and then reduce the parallelism to the SIMD
width wSIMD of the processor core. One warp then
serially rakes4 over the shared partials for
pthreadblock/wSIMD steps without write and barrier
instructions.

3) Cooperative, warp-synchronous reduction. Finally, the
single raking warp performs a synchronization-free, pair-
wise reduction in shared memory of the partial
reductions computed in the previous phase. We exploit
the lock-step SIMD behavior of threads within the same
warp to avoid explicit barrier synchronization.

This construction only requires one barrier-synchronized
exchange through shared memory that is accompanied by a single

3 The actual width of the final five reduction levels is the warp-width

wSIMD=32, regardless of deactivated threads.
4 Raking [4] is a strategy for assigning a set of threads p to process a much

larger data set. Each thread is assigned an even-share of consecutive
inputs to process serially, i.e., the stride between threads is p and the
stride between elements for a given thread is 1.

(a) logb-level tree: each threadblock processes one tile

(b) Two-level: threadblocks are reused to process multiple tiles

Fig. 3. Example threadblock decompositions for global reduction. Threadblocks are comprised of four threads. Tile size b=4 elements.

tile

tile

threadblock0 threadblockn/b-1

K
er

ne
l s

eq
ue

nc
e

un
de

r-
su

bs
cr

ib
ed

tile

tile

threadblock0 threadblockp-1

K
er

ne
l s

eq
ue

nc
e

un
de

r-
su

bs
cr

ib
ed

Fig. 4. Recursive, pair-wise parallelization of local threadblock reduction.
Lighter dataflow arrows indicate partials left in registers

Fig. 5. Recursive, three-phase parallelization for locally reducing a tile of b =
64 elements where pthreadblock = 16 and wSIMD = 4. Lighter dataflow arrows
indicate partials left in registers.

barrier

…

…

…

barrier

…

…

…

barrier

barrier

barrier

barrier

barrier

…

…

t0

t0

t1

t0 t1

t0

t0

t7

t3

t0 t1

t0

barrier

t3

t3

t3

t2

t2

t2

t1

t1

t1

t0

t0

t0

t3

t3

t0 t3t2t1

Se
q

u
e

n
ti

al

re
d

u
ct

io
n

in
 r

e
gi

st
e

rs

Se
q

u
e

n
ti

al
 r

e
d

u
ct

io
n

in
 s

h
ar

e
d

 m
e

m
o

ry

C
o

o
p

e
ra

ti
ve

,

w
ar

p
-s

yn
ch

ro
n

o
u

s

re
d

u
ct

io
n

t3

t1 5t9t8 t10t5t4 t6 t7t1t0 t2 t3 t13t1 2 t1 4t1 1

t15t9t8 t10t5t4 t6 t7t1t0 t2 t3 t1 3t12 t14t11

t15t9t8 t10t5t4 t6 t7t1t0 t2 t3 t1 3t12 t14t11

conditional for reducing the degree of parallelism. All other steps
are free of conditionals, and the bulk of the reduction operators
(first phase) are free of any shared memory overhead. Compared
with the pair-wise example, this three-phase construction only
requires 1,440 thread-instructions to reduce a tile of b=1024
elements using a 128-thread threadblock with wSIMD=32, a savings
of 67%.

This example of local reduction serves to illustrate the
importance of expressing the “general shape” of cooperation from
multiple algorithmic phases. However, we do not want to bind
these phases to any particular widths and depths when authoring
our programs. In this example, the tile size, threadblock size, and
warp size are the unbound tuning parameters that ultimately
dictate the number of steps to statically unroll each phase. They
also dictate the size and layout of shared memory needed for

thread communication. We prefer to bind these parameters after
empirically tuning for a specific problem and target architecture.

We also apply the same thread-serialization techniques for
constructing local implementations of parallel prefix sum. The
ability for parallel threads to cooperatively reserve space within
shared data structures is a fundamental aspect of parallel
computing. For GPU architecture, prefix sum is a much more
efficient mechanism for implementing dynamic data placement
than atomic instructions [18]. As a result of thread serialization,
the Back40 implementations of local prefix sum exhibit a 44%
reduction in dynamic instruction overhead from the recursive
pairwise implementation within CUDPP [6].

5 TUNING VIA THE TYPE SYSTEM
Our design idiom for tuning via the type system uses C++ support
for template-based meta-programming to ease the burden of
granularity selection and algorithmic choice. We construct our
parallel algorithms such that they can be specialized by tuning
policy types.

By parameterizing kernel subroutines with policy types, we
can author the “general shape” of an implementation, leaving
many of the performance-sensitive details unbound. For example,
we can use policy to specify the degree of parallelism, to govern
algorithmic or threshold specialization, to dictate iteration and
unrolling, and for declaring local variable types such as array
sizes and shared memory layouts. Kernel subroutines can be
reused by binding them with different tuning configuration
policies that co-optimize them for the specific problem at hand.

Because the policy is statically known to the compiler, we
often obviate the need for any runtime decision-making with each
logical thread. The cumulative overhead of runtime decision-
making (e.g., how many loads to unroll) is particularly costly on
GPU-like architectures having tens or hundreds-of-thousands of
resident threads.

5.1 A simple example: data-parallel copy
Consider data-parallel copy as a trivial example. As one of the
simplest stencil kernels, threads simply load elements from a
global input array and write them to equivalent locations within
output array. Listing 1 illustrates a “concrete” tile-copying sub-
procedure in which a threadblock copies a tile of 32-bit floats.
Each thread loads and stores exactly one float.

In practice, the ostensibly-simple copy operation incorporates
quite a few tuning decisions that are opaque in terms of their
performance impact for any given architecture and problem type.
Lines 2-14 in Listing 2 illustrate a parametric type Policy that can
be specialized in the following tuning dimensions:

a) The number of loads per thread per tile. This allows us
to increase the number of outstanding loads issued before
stores at the expense of increased register pressure.
Reasonable configurations include 20, 21, and 22 loads
per thread per tile.

b) The number of items per load. Current NVIDIA GPUs
support vector-loads of up to four component elements.
Reasonable configurations include 20, 21, and 22 elements
per vector load.

c) The number of threads per threadblock. Reasonable
configurations include powers-of-twos ranging from 25
to 210 threads.

d) Work-stealing. As algorithmic variants, we can either:
(a) provide each threadblock with an even-share of input
tiles; or (b) allow threadblocks to “steal” tiles of work
using coarse-grained atomic-addition.

Listing 1. A straightforward kernel sub-procedure for threadblocks to
copy a tile of 32-bit floats from one global array to another

Template parameters: None
Formal parameters:

• Global input and output arrays d_in, d_out
• Offset tile_offset into d_in/d_out of the tile to be copied
• Optional limit guarded_elements on the number of tile elements to

copy
Other:

• Global variable thread_id for thread identifier
• Global variable cta_size for threadblock-size in threads

1 __device__ void CopyTile(

2 float *d_in,

3 float *d_out,

4 size_t cta_offset,

5 size_t guarded_elements = cta_size)

6 {

7 if (thread_id < guarded_elements) {

8

9 // Load tile data

10 float data =

11 d_in[tile_offset + thread_id];

12

13 // Store tile data

14 d_out[tile_offset + thread_id] = data;

15 }

16 }

Listing 2. A tuning policy type for data-parallel copy, followed by an
example parameterization of that type specialized for large-problems of
8-byte elements on the GF100 architecture.

1 // Tuning policy type

2 template <

3 // Problem instance type parameters

4 typename T,

5 int ARCHITECTURE,

6

7 // Tunable parameters

8 int LOG_THREADS,

9 int LOG_LOAD_VEC_SIZE,

10 int LOG_LOADS_PER_TILE,

11 ld::CacheModifier READ_MODIFIER,

12 st::CacheModifier WRITE_MODIFIER,

13 bool WORK_STEALING>

14 struct Policy;

15

16 // Example policy parameterization tuned

17 // for 8-byte data, large-size problems

18 typedef Policy<unsigned long long, GF100,

19 8, 7, 1, 0, ld::cg, st::cg, true>

20 LargeProblemPolicy8B;

e) Caching directives. These modifiers affect cache
behavior during loads and stores. Current NVIDIA
GPUs expose up to four variants: default caching at L2
and L1 levels; no caching; cache in global L2 using
smaller cache lines; and tagging for preferential eviction.

Listing 3 illustrates a templated copy subroutine that expresses the
“general shape” of tile-copying. This procedure is not bound to a
specific type of copy-element. In addition, each thread loads and
stores a tunable number of elements. Such tuning details are
encapsulated within the template parameter type Policy.
Furthermore, Listing 2 (lines 18-20) presents an example policy
type instance that has been tuned for copying large lists of 8-byte
elements.

Fig. 6 illustrates the diversity of the corresponding
performance landscape for the current NVIDIA GF100

architecture (GTX480). These tuning options enumerate a
configuration space of 1,728 tuning variants per data type, per
problem size. We evaluate these specializations for a pair of
“large” and “small” representative workloads: 128MB and
128KB. Furthermore, we explore the configuration space for 1-
byte, 2-byte, 4-byte, and 8-byte data types for each problem size.
We normalize the throughputs of each tuning configuration
against the maximum observed for its problem size and plot the
resulting slowdown histograms.

The large problem size (Fig. 6a) is representative of datasets
large enough to saturate the memory subsystem. In general, the
GTX480 is somewhat forgiving at this problem size, i.e., it is
skewed to the right. On average, 25% of all configurations
achieve more than 90% of the maximum achievable throughput
(164 GB/s). However, we observe that it is relatively much more
difficult to achieve this performance when copying 1-byte
characters. Only 2% of configurations achieve more than 90% of
maximum on 1B problem instances.

The performance for the small problem size (Fig. 6b) is much
more diverse. Only 6% of all specializations fall within 90% of
the maximum throughput (65 GB/s). For the various problems
discussed throughout this paper, we generally observe that it is
comparatively harder to find tuning configurations that are well-
suited to small, fleeting workloads.

We also observed the configurations corresponding to the
straightforward implementation specified in Listing 1 were not
particularly competitive. For the large 128MB problems
instances, the best 4-byte, 1-load, vector-1 configurations perform
at less than 90% of maximum-achievable. For the small 128KB
instances, these configurations only muster 65% of maximum-
achievable. It is not obvious to the programmer that this
“concrete” implementation would perform so poorly.

Finally, we use this tunable kernel to determine the
maximum-achievable DRAM bandwidths for each of our three of
our evaluation GPUs (GTX480, GTX280, and 9800 GTX+). We
use these throughputs, listed in Table 1, to evaluate the absolute
performance of memory-bound implementations.

(a) Large problem size = 128MB, max throughput = 164 GB/s

(b) Small problem size = 128 KB, max throughput = 65 GB/s

Fig. 6. “Copy” kernel performance histograms of tuning configurations binned by normalized slowdown with respect to the maximum throughput achieved
(NVIDIA GTX 480).

0

200

400

600

800

1000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
re

q
u

e
n

cy
 (

tu
n

in
g

 c
o

n
fi

g
s)

Performance vs. max throughput

8B elements
4B elements
2B elements

1B elements

0

100

200

300

400

500

600

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
re

q
u

e
n

cy
 (

tu
n

in
g

 c
o

n
fi

g
s)

Performance vs. max throughput

8B elements
4B elements

2B elements
1B elements

Listing 3. A generalized, policy-based kernel sub-procedure for
threadblocks to copy a tile of elements from one global array to another.

Template parameters:
• Tuning policy type Policy as per Listing 2

Formal parameters:
• Global input and output arrays d_in, d_out
• Offset tile_offset into d_in/d_out of the tile to be copied
• Optional limit guarded_elements on the number of tile elements to copy

Other:
• Device function LoadTileValid() for reading each thread’s tile portion
• Device function StoreTileValid() for writing each thread’s tile portion

1 template <typename Policy>

2 __device__ void CopyTile(

3 typename Policy::T *d_in,

4 typename Policy::T *d_out,

5 typename size_t tile_offset,

6 typename size_t guarded_elements =

7 Policy::ELEMENTS_PER_TILE)

8 {

9 // Tile data

10 typename Policy::T

11 data[1 << Policy::LOG_LOADS_PER_TILE]

12 [1 << Policy::LOG_LOAD_VEC_SIZE];

13

14 // Load tile

15 LoadTileValid<Policy>(

16 data, d_in + tile_offset, guarded_elements);

17

18 // Store tile

19 StoreTileValid<Policy>(

20 data, d_out + tile_offset, guarded_elements);

21 }

Table 1. Max achievable DRAM bandwidth (10
9
 Bytes/s)

 GTX480 GTX280 9800 GTX+

Unidirectional (even-share) 163.4 135.6 67.8

Unidirectional (steal) 168.6 63.6 42.6

Bidirectional (even-share) 153.6 125.4 61.7

Bidirectional (steal) 163.7 85.3 55.5

5.2 Analysis of performance landscape across
GPU architecture
In this section, we explore the cumulative tuning landscape for
several data-parallel and cooperative problems across the last
three generations of NVIDIA GPU architecture. Our evaluation is
comprised of the following four benchmark problems: copy-
transform, reduction, prefix sum, and reduce-by-key5. Global
copy is the simplest performance proxy for any memory-bound
data parallel transformation. Prefix sum is a performance proxy
for kernels that compute recurrence relations or partition data
(e.g., sorting). Reduce-by-key is a performance proxy for dataset
contraction (e.g., list-compaction and duplicate-removal) and can
be used to implement map-reduce computation (after mapping and
sorting stages).

Table 2 lists the kernels that comprise each benchmark and
the dimensions along which we can tune each kernel. For
example, the reduce-by-key benchmark has three kernels, each of
which can tuned by loads-per-thread, items-per-load, and number-
of-threads-per-threadblock (a, b, and c from the previous section).
With three kernels and 54 tuning specializations per kernel, the
benchmark has an overall tuning domain of 157,464 tuning
configurations.

Our investigation evaluates how different tuning policies
respond to different problem instances (where a problem instance
is a specific combination of data type, problem size, and GPU
architecture). We evaluate the performance of each tuning
configuration across a sample space of 72 problem instances
constructed from combinations of the following:

• Four data types (1-byte, 2-byte, 4-byte, and 8-byte
elements)

5 Given a list of key-value pairs, reduce-by-key is analogous to a
segmented reduction over the values where the segments are defined by
regions of consecutive, identical keys.

• Six problem sizes (128 KB, 512 KB, 2MB, 8MB, 32MB,
and 128 MB)

• Three GPU architectures (NVIDIA GF100, GT200, G92
represented by GTX480, GTX280, and 9800 GTX+
GPUs)

We are interested in gauging how performance varies between
configurations as well as within configurations. These two
metrics intuitively correspond to the “strength” and “consistency”
of individual tuning configurations, respectively.

We normalize our performance samples to the interval [0,1]
so that we may generalize behavior across problem instances. For
every problem instance, we identify the tuning configuration that
provides the best sample performance. (For example, reducing
128 MB of 4-byte integers on GT200 maximally proceeds at 169
GB/s.) We then normalize the performance samples of all
configurations for that problem instance in terms of relative
slowdown against this “best” performance.

We use the statistical metrics between-group variance (s2
B)

and within-group variance (s2
W) for analyzing the diversities of

configuration strength and consistency, respectively [10]. The
between-group variance is a measure of the variability of
configuration means around the grand mean. The within-group
variance is a weighted average of configuration variance, with
weights determined by the number of problem instance samples in
each configuration.

Between-group analysis. Table 3 and Table 4 present the
between-group and within-group variances, respectively. The
large ratios of s2

B/s2
W indicate that the broad majority of overall

variation between pairings of configurations and problem
instances is due to differences between configurations, i.e., certain
configurations are innately better or worse than others. The
performance-slowdown histograms in Fig. 7 graphically illustrate
the ample performance variation amongst tuning configurations
by binning configurations by their average slowdown.

Furthermore, Table 3 also reveals that some architectures are
relatively more pliant than others. For example, the variances
among tuning configurations are much lower for problem
instances on the GTX280 than for the newer GTX480, particularly
for the reduction benchmark.

Within-group analysis. Despite being dwarfed by between-
groups variance, the within-groups variance s2

W is also fairly
significant. For example, the within-groups deviation sW for
prefix sum across all GPUs is √0.6 = 24%. This implies that
performance is also strongly related to problem instance, and that
it will be relatively difficult to find tuning configurations that are
universally better than others.

The histograms in Fig. 7 corroborate the absence of tuning
configurations that perform well across the entire sample space of
problem instances. “Well-rounded” tuning configurations do not
exist. For example, no single configuration for copy averages
more than 83% of the maximum-achievable performance across
problem instances. For reduction, prefix-sum, and reduce-by-key,
the best all-purpose configurations only average 73%, 73%, and
83% of what we can maximally achieve.

5.3 Effectiveness of auto-tuning
For large saturating problem sizes, we would like our memory-
bound problems (namely copy, reduction, and prefix sum) to
proceed at the maximum-achievable DRAM bandwidth for each
device. Because of the heavily overlapped nature of the GPU, we
would expect that all memory-bound specializations would yield
equal performance. Table 5 reveals this not to be the case. It
presents the average bandwidth utilization across pairings of

Table 2. Performance-portability landscape benchmarks

Benchmark Kernel tuning dimensions
Tuning configs per

problem instance

Total sample

evaluations

Copy transform Copy: a, b, c, d, e 1,728 124,416

Reduction
Upsweep:

Spine:

a, b, c, d

a, b, c
8,748 104,976

Prefix sum

Upsweep:

Spine:

Downsweep:

a, b, c

a, b, c

a, b, c

157,464 11,337,408

Reduce-by-key

Upsweep:

Spine:

Downsweep:

a, b, c

a, b, c

a, b, c

157,464 11,337,408

Table 3. Between-configs slowdown variance (s
2

B)

 GTX 480 GTX 280 9800 GTX+ All GPUs

Copy 0.52 0.08 0.48 0.40

Reduction 0.74 0.15 0.31 0.41

Prefix sum 0.58 0.42 0.31 0.83

Reduce-by-key 0.53 0.38 0.25 0.91

Table 4. Within-configs slowdown variance (s
2

W)

 GTX480 GTX280 9800 GTX+ All GPUs

Copy 0.03 0.04 0.14 0.07

Reduction 0.03 0.04 0.11 0.06

Prefix sum 0.03 0.02 0.09 0.06

Reduce-by-key 0.01 0.01 0.03 0.02

configurations with 128MB problem instances, normalized to the
DRAM bandwidth presented in Table 1. The three
implementations that should be bandwidth-bound at this problem
size are nowhere near maximum bandwidth utilization.

However, our autotuning search is quite effective at finding
specific configurations that perform at peak or near-peak
bandwidth. Selecting among only the best-performing
configurations for each of the 128MB problem instances, Table 6
shows that we can identify policy configurations that perform
exceptionally well for each data type (1B – 8B). Even for our
compute-bound problem (reduce-by-key), our best-performing
configurations are more than twice as fast.

We further illustrate the need for specialization by comparing
our tuned global reduction kernels against those provided by the
Thrust library of GPU primitives [27]. To this point, we have
emphasized the mediocre performance of our average program
variants. This raises the question of whether our average
specializations are representative of concrete implementations “in
the wild.” The Thrust implementation of global reduction is a
good point of comparison because it shares the same overall
parallelization strategy.

Fig. 8 illustrates our autotuned reduction performance
advantage over the Thrust implementation for both saturating
128MB and fleeting 128KB problem instances. For large,
GF100-based problems instances, the Thrust performances align
with our average configuration performance. In relation, our
tuned specializations achieve a harmonic mean speedup of 1.6x.

Their large-problem performance is relatively much better for the
older GT200 and G92 architectures. We only achieve 1.14x and
1.08x speedups for those GPUs, respectively.

Fig. 8b illustrates the importance of autotuning for small
problem sizes. For this subset of problem instances, the Thrust
performance is representative of our grand-mean configuration
slowdown of 0.6 across all reduction problems. In relation, our
tuned specializations achieve harmonic mean speedups of 2.4x,
2.6x, and 3.9x for the GF100, GT200, and G92 architectures,
respectively.

6 CONCLUSION
In constructing the Back40 library of high performance CUDA
primitives, it became clear that “concrete” implementations were
simply not performance portable. Our tuning analyses illustrated
the dire performance portability landscapes of such program
instances, showing them to be incapable of delivering good
performance across the domain of problem instances they might
be expected to address. A recurring observation is the difficulty
of achieving good performance from a single implementation on
both large, saturating workloads and small, fleeting workloads.

To achieve performance portability, we developed a design
methodology for policy-based tuning where reusable components
express the “general shape” of their solution, leaving many of the
performance sensitive details unbound. By incorporating policy
types within procedural interfaces, we enable the co-optimization
reusable software components with the enclosing kernel

(a) Global copy

(b) Global reduction

(a) Global prefix sum

(b) Global reduce-by-key

Fig. 7. Performance histograms of tuning configuration “strength.” Configurations are binned by their harmonic mean slowdown across all problem
instances. (For a specific problem instance, the slowdown for a given tuning configuration is relative to the maximum performance achieved by any
configuration on that problem instance.)

0

2

4

6

8

10

0%

20%

40%

60%

80%

100%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
re

q
u

e
n

cy
 o

f
tu

n
in

g
 c

o
n

fi
g

s

C
u

m
u

la
ti

v
e

 %

Average slowdown

0

50

100

150

200

250

300

0%

20%

40%

60%

80%

100%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
re

q
u

e
n

cy
 o

ft
u

n
in

g
 c

o
n

fi
g

s

C
u

m
u

la
ti

v
e

 %

Average slowdown

0

1000

2000

3000

4000

5000

0%

20%

40%

60%

80%

100%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0F
re

q
u

e
n

cy
 o

f
tu

n
in

g
 c

o
n

fi
g

s

C
u

m
u

la
ti

v
e

 %

Average slowdown

0

1000

2000

3000

4000

0%

20%

40%

60%

80%

100%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
re

q
u

e
n

cy
 o

f
tu

n
in

g
 c

o
n

fi
g

s

C
u

m
u

la
ti

v
e

 %

Average slowdown

Table 5. Average bandwidth utilization of all 128MB

tuning configurations

 GTX480 GTX280 9800 GTX+

Copy 0.72 0.43 0.45

Reduction 0.61 0.32 0.35

Prefix sum 0.59 0.46 0.47

Reduce-by-key 0.31 0.16 0.16

Table 6. Average bandwidth utilization of best 128MB

tuning configurations

 GTX480 GTX280 9800 GTX+

Copy 1.00 0.99 0.99

Reduction 0.96 0.88 0.95

Prefix sum 0.97 0.97 0.94

Reduce-by-key 0.67 0.38 0.33

application. We found the C++ type system to be useful as a
mechanism for specializing code generation via template
metaprogramming, particularly as many tuning decisions affect
data structure and layout within shared memory. Our autotuning
results demonstrate the ability to consistently discover excellent
specializations for the specific problem instance at hand.

An important application of such specialization is the
selection of the proper granularity of concurrent work. We
showed that parallelizations that achieve a proper balance between
serial and parallel phases of computation provide significantly
better efficiency and performance than those that simply express
all available concurrency.

7 REFERENCES
[1] Aila, T. and Laine, S. 2009. Understanding the efficiency of ray

traversal on GPUs. Proceedings of the Conference on High
Performance Graphics 2009 (New York, NY, USA, 2009), 145–
149.

[2] Ansel, J. et al. 2009. PetaBricks: a language and compiler for
algorithmic choice. Proceedings of the 2009 ACM SIGPLAN
conference on Programming language design and implementation
(New York, NY, USA, 2009), 38–49.

[3] Back40 Computing: Fast and efficient software primitives for
GPU computing: http://code.google.com/p/back40computing/.
Accessed: 2011-08-25.

[4] Blelloch, G.E. et al. Solving linear recurrences with loop raking.
416–424.

[5] CUDA: http://www.nvidia.com/object/cuda_home_new.html.
Accessed: 2011-08-25.

[6] cudpp - CUDA Data Parallel Primitives Library - Google Project
Hosting: http://code.google.com/p/cudpp/. Accessed: 2011-07-12.

[7] Dagum, L. and Menon, R. 1998. OpenMP: an industry standard
API for shared-memory programming. IEEE Computational
Science and Engineering. 5, (Mar. 1998), 46–55.

[8] Dean, J. and Ghemawat, S. 2008. MapReduce: simplified data
processing on large clusters. Commun. ACM. 51, 1 (Jan. 2008),
107–113.

[9] Demmel, J. et al. 2005. Self-Adapting Linear Algebra Algorithms
and Software. Proceedings of the IEEE. 93, 2 (Feb. 2005), 293–
312.

[10] Devore, J. 1999. Applied statistics for engineers and scientists.
Duxbury Press.

[11] Fatahalian, K. et al. 2006. Sequoia: programming the memory
hierarchy. Proceedings of the 2006 ACM/IEEE conference on
Supercomputing (New York, NY, USA, 2006).

[12] Frigo, M. 1999. A fast Fourier transform compiler. Proceedings of
the ACM SIGPLAN 1999 conference on Programming language
design and implementation (New York, NY, USA, 1999), 169–
180.

[13] Halstead,Jr., R.H. 1985. MULTILISP: a language for concurrent
symbolic computation. ACM Trans. Program. Lang. Syst. 7, 4
(Oct. 1985), 501–538.

[14] IEEE Computer Society 2009. IEEE Standard VHDL Language
Reference Manual. IEEE Std 1076-2008 (Revision of IEEE Std
1076-2002). (2009), c1 –626.

[15] Klöckner, A. et al. 2011. PyCUDA and PyOpenCL: A scripting-
based approach to GPU run-time code generation. Parallel
Computing. (Sep. 2011).

[16] Kurzak, J. et al. 2011. Autotuning GEMMs for Fermi. Technical
Report #245. LAPACK Working Note.

[17] Mcgraw, J. et al. 1985. SISAL: Streams and iteration in a single
assignment language, language reference manual version 1.2.
Lawrence-Livermore-National-Laboratory.

[18] Merrill, D. 2011. Allocation-oriented Algorithm Design with
Application to GPU Computing. University of Virginia.

[19] Merrill, D. and Grimshaw, A. 2011. High Performance and
Scalable Radix Sorting: A case study of implementing dynamic
parallelism for GPU computing. Parallel Processing Letters. 21,
02 (2011), 245–272.

[20] Merrill, D. and Grimshaw, A. 2009. Parallel Scan for Stream
Architectures. Technical Report #CS2009-14. Department of
Computer Science, University of Virginia.

[21] Optimizing parallel reduction in CUDA: 2007.
http://developer.download.nvidia.com/compute/cuda/1_1/Website/
projects/reduction/doc/reduction.pdf. Accessed: 2009-12-12.

[22] Owens, J.D. et al. 2008. GPU Computing. Proceedings of the
IEEE. 96, 5 (May. 2008), 879–899.

[23] Puschel, M. et al. 2005. SPIRAL: Code Generation for DSP
Transforms. Proceedings of the IEEE. 93, 2 (Feb. 2005), 232–275.

[24] Rice, H.G. 1953. Classes of Recursively Enumerable Sets and
Their Decision Problems. Transactions of the American
Mathematical Society. 74, 2 (1953), pp. 358–366.

[25] Rogers, H. 1987. Theory of recursive functions and effective
computability. MIT Press.

[26] Rudy, G. et al. 2011. A programming language interface to
describe transformations and code generation. Proceedings of the
23rd international conference on Languages and compilers for
parallel computing (Berlin, Heidelberg, 2011), 136–150.

[27] Thrust - Code at the speed of light - Google Project Hosting:
http://code.google.com/p/thrust/. Accessed: 2011-08-25.

[28] Tiwari, A. et al. 2009. A scalable auto-tuning framework for
compiler optimization. Proceedings of the 2009 IEEE
International Symposium on Parallel&Distributed Processing
(Washington, DC, USA, 2009), 1–12.

[29] Tzeng, S. et al. 2010. Task management for irregular-parallel
workloads on the GPU. Proceedings of the Conference on High
Performance Graphics (Aire-la-Ville, Switzerland, Switzerland,
2010), 29–37.

[30] Valiant, L.G. 1990. A bridging model for parallel computation.
Commun. ACM. 33, 8 (Aug. 1990), 103–111.

[31] Volkov, V. and Demmel, J.W. 2008. Benchmarking GPUs to tune
dense linear algebra. Proceedings of the 2008 ACM/IEEE
conference on Supercomputing (Piscataway, NJ, USA, 2008),
31:1–31:11.

[32] Vuduc, R. et al. 2005. OSKI: A library of automatically tuned
sparse matrix kernels. Journal of Physics: Conference Series. 16,
(Jan. 2005), 521–530.

(a) 128 MB problem instances

(b) 128 KB problem instances

Fig. 8. Global reduction performance comparison between our autotuned and the “concrete” Thrust implementations.

1.7x 1.8x 1.7x 1.2x

1.3x

1.3x
1.1x

1.02x

1.05x

1.01x
1.01x

1.3x

GTX 480 GTX 280 9800 GTX+

0

50

100

150

200

1B 2B 4B 8B 1B 2B 4B 8B 1B 2B 4B 8B

M
e

m
 t

h
ro

u
g

h
p

u
t

(1
0

9
b

y
te

s
/s

)

Thrust Autotuned

6.0x
3.3x

1.9x
1.5x

7.4x

4.7x 1.7x

1.7x

39.1x
26.0x

2.1x
2.0x

GTX 480 GTX 280 9800 GTX+

0

50

100

150

200

1B 2B 4B 8B 1B 2B 4B 8B 1B 2B 4B 8B

M
e

m
 t

h
ro

u
g

h
p

u
t

(1
0

9
b

y
te

s
/s

)

Thrust Autotuned

