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ABSTRACT 
Although modular programming is a fundamental software 
development practice, software reuse within contemporary GPU 
kernels is uncommon.  For GPU software assets to be reusable 
across problem instances, they must be inherently flexible and 
tunable.   To illustrate, we survey the performance-portability 
landscape for a suite of common GPU primitives, evaluating 
thousands of reasonable program variants across a large diversity 
of problem instances (microarchitecture, problem size, and data 
type).  While individual specializations provide excellent 
performance for specific instances, we find no variants with 
“universally reasonable” performance.   

In this paper, we present a policy-based design idiom for 
constructing reusable, tunable software components that can be 
co-optimized with the enclosing kernel for the specific problem 
and processor at hand.  In particular, this approach enables 
flexible granularity coarsening which allows the expensive 
aspects of communication and the redundant aspects of data 
parallelism to scale with the width of the processor rather than the 
problem size.  From a small library of tunable device subroutines, 
we have constructed the fastest, most versatile GPU primitives for 
reduction, prefix and segmented scan, duplicate removal, 
reduction-by-key, sorting, and sparse graph traversal. 

Categories and Subject Descriptors        
D.1.3 [Programming Techniques]: Concurrent programming; 
D.2.13 [Software Engineering]: Reusable Software; D.3.4 
[Programming Languages]: Processors – optimization  

General Terms   
Performance, Design, Languages 

Keywords        
Performance, performance portability, software reuse, library 
design, auto tuning, policy, metaprogramming  
 

1 INTRODUCTION 
Parallel computing is fundamentally motivated by performance.  
However, absolute performance is not always an exclusive design 
objective.  Sustainable software development also values design 
practices that emphasize program modularity, software reuse, and 
other productivity enhancing methodologies.   

It can be difficult to develop modular programs for massively 
parallel machines like GPUs.  Achieving high performance while 
maintaining good software abstractions is often challenging.  The 

addition of parallelism creates further complexity.  Despite the 
existence of many libraries of reusable CUDA kernels, we see 
little reuse of components within kernels themselves [22].  
Furthermore, these libraries often require re-tuning effort for new 
GPU architectures.  As GPUs evolve and existing programs 
mature, we are increasingly motivated to simultaneously satisfy 
the design objectives of (1) absolute performance and (2) 
portability and reuse, despite their often adversarial relationship. 

We believe the dearth of reusable kernel components 
corresponds to a lack of performance portability.  The absolute 
performance of many kernels is significantly influenced by 
problem type, problem size, and specific GPU microarchitecture.  
As a consequence, performance-sensitive applications derive little 
value from libraries of reusable device subroutines that cannot be 
tailored for the specific problem and processor at hand.  In this 
paper, we present a software design methodology for policy-based 
tuning where authors of reusable software components express the 
“general shape” of their solutions, leaving many of the 
performance sensitive details unbound.   

This approach was developed for the Back40 library of GPU 
computing [3].  To our knowledge, Back40 provides the fastest 
and most performance-portable implementations of reduction, 
prefix scan, segmented scan, duplicate removal, histogram, 
reduce-by-key, sorting of numeric primitives, and sparse graph 
traversal.  These primitives are all constructed from a core library 
of reusable, tunable device subroutines for common kernel 
activities (e.g., workload management, data movement, variants of 
local reduction and prefix scan, etc.).  

We motivate our policy-based design methodology with an 
examination of performance portability landscapes and the 
performance benefits of implementing flexible algorithmic 
granularity.  

1.1 Investigation of performance portability   
We evaluate the performance portability landscapes for the 
following archetypal sequence-processing primitives: copy-
transform, reduction, prefix scan, and reduce-by-key.  We explore 
the tuning spaces for these problems across a variety of data types, 
problem sizes, and NVIDIA microarchitecture (GF100, GT200, 
and G92).  Our results show: 

• A large performance variation among program instances 
representative of manually authored code. 

• We can identify optimal or near-optimal program 
variants for many combinations of problem type and 
microarchitecture. 

• No single program variant provides “universally 
reasonable” performance across all data types, problem 



sizes, and architectures.  While we expected over-fitting 
of program variants to individual problem instances, we 
were surprised by the lack of well-rounded program 
variants. 

1.2 Policy-based tuning  
These empirical observations motivate our software design 
methodology centered on policy-based tuning.  The premise of 
policy-based tuning is to insulate both programmers and reusable 
software components from cementing implementation decisions 
having opaque performance consequences.  By leaving such 
decisions unbound within the program text, we construct generic 
implementations that can later be specialized for specific problem 
instances and target microarchitectures.  This allows us to obtain 
excellent absolute performance as well as performance portability 
from reusable software components. 

The approach we describe is based on C++ 
metaprogramming.  More specifically, our methodology 
incorporates procedural interfaces having parametric policy types.  
The text for a given procedure refers to these reflective policy 
parameters to describe how the compiler should expand, couple, 
and select from various phases of sequential and parallel 
computation.  This provides us with the interface flexibility to 
adapt reusable components within the context of the enclosing 
implementation, problem, and processor.   

1.3 Flexible granularity coarsening  
Our policy-based tuning methodology was principally developed 
to permit flexible granularity coarsening, the expression of 
programs that accommodate a sliding scale of parallel versus 
sequential computation.  By limiting the amount of concurrency 
expressed by the program, we force the costs of thread 
cooperation and parallelism to scale with the width of the 
processor rather than the problem size.   

Flexible granularity can complicate parallel programs because 
the program text must combine code for both serial and parallel 
phases.  Furthermore, we want to leave unbound both: (1) the 
number of steps each phase is to be run; and (2) the width of 
parallelism for each phase.  Policy-based tuning allows us to 
specialize a program text by adapting the amount of exposed 
concurrency to individual processors, including those that may not 
yet be known. 

Our work illustrates the benefit of matching appropriate task 
granularities with the width of the underlying hardware.    At the 
global scheduling level, we show that increasing the granularity of 
work performed by threadblocks provides computational savings 
of 67% for global reduction, 42% for global prefix sum, and 27% 
for radix sorting passes.  At the local level, increasing the 
sequential workloads of individual threads yields computational 
savings of 67% and 44% for intra-threadblock reduction and scan, 
respectively. 

2 GPU COMPUTING 
Contemporary processor architecture provides increasing 
parallelism in order to deliver higher throughput while 
maintaining energy efficiency.  Modern GPUs are at the leading 
edge of this trend, provisioning tens of multiprocessor cores per 
chip, each of which manages on the order of a thousand hardware-
scheduled threads.  Each core employs data parallel SIMD (single 
instruction, multiple data) techniques in which a single instruction 
stream is executed by a fixed-size grouping of threads called a 
warp.  A threadblock is a group of threads that will be co-located 
on the same core and share a local on-chip scratch memory.  

Parallel threads are used to execute a single program, or kernel.  
Coherence within shared memory spaces follows the bulk-
synchronous parallel model [30]. 

3 TUNING AS AN EXPLICIT DESIGN 
METHODOLOGY 

We can generalize the inherent challenges of parallel 
programming as stemming from two related sources: expressing 
parallelism, and mapping the expression of parallelism onto real 
hardware.  The former encapsulates the creative aspects of 
devising and authoring a clean, concise, and correct description of 
parallel computation.  The latter comprises the practical aspects of 
compiling and scheduling such descriptions of computation and 
data movement onto the underlying hardware for efficient 
execution.   

The twin burdens of expression and mapping have historically 
fallen separately upon the shoulders of the programmer and the 
compiler/runtime, respectively.  For sequential programs, 
compilers and dynamic CPU pipelines have largely succeeded in 
providing performance-portability without explicit guidance from 
the programmer. 

However, the effectiveness of this arrangement is unlikely to 
continue as contemporary processor architecture embraces ever-
increasing parallelism.  As we discuss in this section, a philosophy 
of complete insulation from the mapping process is less useful for 
achieving both portability and performance.  At worst, it is 
counterproductive.  In particular, there are three aspects of 
mapping that would benefit from explicit guidance from the 
programmer: variable concurrency, algorithm selection, and 
resource scheduling. 

3.1 Variable concurrency 
Parallel computing adds an important facet to the process of 
mapping programs onto hardware: the amount of concurrency 
expressed by the program text.  Many programming abstractions 
are designed for the program to specify all available concurrency.  
For example, SISAL [17], MultiLisp [13], and VHDL [14] are 
well-known declarative languages for expressing the data 
dependences that expose which computations can proceed in 
parallel.  Similarly, the abstractions for data parallelism within 
frameworks such as OpenMP [7], CUDA [5], and MapReduce [8] 
require the specification of independent operations to be 
performed on every data element.  

In this vein, GPU programmers are encouraged to construct 
data-parallel task decompositions that instantiate a unique logical 
thread for every data item.  The abstract machine model supports 
this idiom through thread virtualization, i.e., the decoupling of 
logical threads from hardware threads.  This idiom simplifies 
development: programmers need only express a single algorithmic 
strategy that encodes the smallest granularity of parallel 
computation. 

On the surface, this idiom is also attractive for mapping 
programs onto hardware.  First, the approach ensures that the 
concurrency expressed by a given program is both maximal and 
scales with problem size.  These two properties are useful for 
achieving strong and weak scaling, respectively.  Second, the 
idiom provides good portability.  It abstracts away the physical 
details of processor cores and SIMD widths that may vary across 
GPUs.  Finally, the oversubscription of processing elements with 
short-lived tasks helps ensure good load balancing and overall 
utilization.   

However, this style of thread decomposition has important 
performance consequences for cooperative problems, i.e., 



parallelizations with sharing dependences.  When logical threads 
scale with input size, so does the amount of communication 
through memory.  Communication between logical threads often 
results in the same data being loaded back into registers on the 
same processor core, yet at the expense of many clock cycles and 
costly synchronization for correctness.  We would prefer not to 
move such data at all.  This implies that communication overhead 
should scale with physical processing elements, not problem size.   

Furthermore, a portion of the overall instruction workload also 
scales with logical threads.  Local computation within a 
threadblock typically involves computing conditional predicates, 
performing offset calculations, initializing local variables and 
shared memory, etc.  Many of these operations are identical across 
threadblocks.  For example, thread ti in one threadblock is likely 
to have the same activation schedule and access the same shared 
memory locations as thread ti in all other threadblocks.  These 
identical instructions are effectively redundant when they are 
ultimately executed on the same SIMD lanes.  When the number 
of threadblocks scales with problem size, this redundant 
computation does as well. 

We can reduce the presence of unnecessary computation and 
communication by increasing the granularity, i.e., amount of serial 
work performed by each thread, warp, and threadblock.  Our goal 
is to construct parallelizations where logical threads are a multiple 
of machine width, not problem size.   

3.2 Algorithm selection 
For many problems, no single parallelization is best across all 
processor architectures and input sizes, types, and data.  The 
preference of one algorithm over another can depend on problem 
size and data type [2].  Ideally, we would like our compilers to be 
able to: (1) detect that a program implements a particular 
algorithm; and (2) synthesize an alternative parallelization that 
might be better suited for the underlying hardware.   

However, it is extremely difficult to implement such compiler 
intelligence, particularly for problems having non-trivial data 
dependences.  In the general case, it is impossible [24, 25].  This 
motivates programming methodologies having a less opaque 
relationship between the expression of the parallel program and its 
compilation, e.g., one in which the programmer explicitly supplies 
algorithmic alternatives and rules for guiding selection among 
them based upon problem type and target processor. 

3.3 Resource scheduling 
The challenges of mapping programs onto parallel hardware 
extend beyond algorithmic choice and granularity.  Even when the 
basic outline of an algorithm is a good fit for the underlying 
machine model, an efficient scheduling of threads on one 
processor can result in significant underutilization on another.  
This is exacerbated on contemporary GPUs, where the hardware 
resources provisioned for each thread (registers, shared memory, 
etc.) are intimately intertwined with co-scheduling, i.e., the 
arrangement of threads within threadblocks and of threadblocks 
within multiprocessor cores.   

Logical threads are dispatched onto processor cores by 
threadblock. The number of resident, active threadblocks per core 
is limited by the core’s resources, namely the aggregate register 
file, local shared memory, and scheduling contexts.  For example, 
the NVIDIA GF100 architecture provisions 32K 32-bit registers, 
48KB shared memory, and scheduling resources for 1,536 threads 
per core.  The configuration space for thread blocking is quite 
large, including such alternatives as: 

• Three resident 512-thread threadblocks (1536 
threads/core), 16KB shmem per threadblock, 21 registers 
per thread  

• Six resident 128-thread threadblocks (768 threads/core), 
8KB shmem per threadblock, 42 registers per thread   

• Eight resident 64-thread threadblocks (512 threads/core), 
6KB shmem per threadblock, 64 registers per thread  

What should the program specify?  The performance 
consequences are opaque.  A higher number of resident threads 
per core does not necessarily imply greater throughput if 
computation or memory is already saturated.  Larger residency 
also results in increased register pressure per thread and can result 
in costly spills to off-chip memory.  Having a large number of 
small threadblocks can provide a greater diversity of 
instantaneous thread behavior for better core utilization.  The 
same diversity, however, can be harder on read-only cache 
hierarchies.  More resident threadblocks also reduces the amount 
of shared memory available to each threadblock for local 
cooperation.   

Furthermore, these co-scheduling relationships explicitly 
affect the expression of thread behavior within program text.  In 
particular, the degree of local parallelism affects the layout of 
shared memory within which threads communicate.  On one hand, 
we can encode these relationships directly within our kernel 
programs, having each thread dynamically compute many of the 
derivative details it will need (e.g, offsets, strides, etc.) from 
parameters supplied by the host program.  Alternatively, we can 
encode these relationships statically using the type system, 
allowing the much of this information to be computed at compile 
time. 

3.4 Related work 
Without precise analytical models for complex and data-
dependent scheduling interactions on specific target architecture, 
the automation of empirical performance tuning (autotuning) is a 
common approach for program optimization.  The tuning of 
sequential code has largely focused on various aspects of adaptive 
inlining and loop transformations.  The former can increase the 
scope and quality of program optimization and the latter can 
improve the utilization of deep and diverse CPU cache 
hierarchies. [9, 12, 32] 

Performance tuning for parallel programs has typically 
followed one of three methodologies.  The first pairs a 
parallelizing compiler with an autotuning framework for mapping 
sequential loop nests onto parallel hardware.  The considerations 
for both parallelization and tuning are often transparent to the 
programmer, or minimally influenced via code annotation or 
ancillary “recipes.” [26, 28]   

The second approach employs a separate metalanguage or 
code synthesizer to assemble program specializations from 
fragments of an explicitly-parallel language.  Such frameworks 
are typically ad hoc in nature and/or are constructed for specific 
applications. [15, 16, 23] 

Under the third methodology, the parallel programming 
language serves as its own metalanguage.  Sequoia [11] and 
Petabricks [2] are example languages that provide their own 
mechanisms for expressing tunable parameters and variants.  Our 
policy-based approach also falls within this category: we leverage 
template features of the CUDA C++ type system for constructing 
program text that is capable of manipulating its own compilation.   

Our methodology has two important distinctions within this 
third category.  The first is that we make use of reflective tuning 
types across procedural interfaces to facilitate co-optimization of 



reusable library components.  The second is that we use the same 
type system for expressing tuning policy as well as for the data 
structures that govern the layout of shared memory.  Thus we can 
express layout in terms of policy.  This is particularly useful when 
authoring cooperative algorithms where a tunable number of 
threads must communicate with each other through shared 
memory while adhering to architecture-specific rules for avoiding 
bank conflicts.  

The practice of increasing the granularity of work performed 
by threads and threadblocks is a common GPU performance 
optimization.  The linear algebra implementations by Volkov et 
al. employ register blocking to improve instruction level 
parallelism by increasing the number of items locally processed 
per thread [31].  The global reduction implementations by Harris 
have threadblocks that process more than one tile1 of input data 
[21].  Our prefix scan and sorting implementations invoke kernels 
whose threadblocks scale with the number of GPU multiprocessor 
cores [19, 20].  Similarly, the software graphics pipelines by Aila 
et al. [1] and Tzeng et al. [29] implement long running, persistent 
threadblocks that interact through global work queues.  This paper 
investigates tunable granularity coarsening in the context of 
performance portability and software reuse. 

4 GRANULARITY COARSENING 
This section illustrates two important applications of granularity 
coarsening: threadblock serialization and thread serialization.  
The Back40 library of primitives makes extensive use of policy-
based tuning to implement these two patterns.  

4.1 Threadblock serialization 
The CUDA programming model encourages data-parallel 
decompositions where the number of threads, and thus the number 
of threadblocks, scales with problem size.  Fig. 1a illustrates this 
for a simple data-parallel transformation (e.g., copy).  Each 
threadblock processes exactly one tile of data, typically where the 
number of data elements b in a tile corresponds to the number of 
threads in a threadblock.  For a given problem of size n and 
scheduling granularity b, the kernel will launch a grid of C = n/b 
threadblocks. 

Fig. 1b illustrates alternative threadblock decomposition for 
the same data-parallel problem in which the number of 
threadblocks launched C is constant.  The tile-processing logic for 
each threadblock wrapped within in a while-loop.  When C is a 

                                                                 
1 To avoid further overloading of the term “block”, we use tile to describe 

a block of input data that a threadblock is designed to process to 
completion before terminating or obtaining another block of input. 

fixed multiple of cores p, each threadblock is responsible for 
serially processing O(n/(pb)) tiles.  Because C is O(p), the number 
of logical threads scales with processor width instead of problem 
size.  

We illustrate the effectiveness of this technique for a trivial 
data-parallel “copy” kernel.  Threads simply read and write their 
32-bit elements from global input and output arrays.  We use 
64M-element arrays, large enough to saturate the GTX480 
memory subsystem.  Fig. 2 plots the dynamic instruction overhead 
per input element as a function of the number of threadblocks 
launched by the kernel2.  We vary the threadblock count from the 
minimum number needed to occupy the processor (8p=120 
threadblocks) to fully data-parallel (n/b = 64K threadblocks where 
b=1024).  

We observe that the computational overhead increases linearly 
with the number of threadblocks invoked.  With fewer 
threadblocks, the computational savings from reduced 
concurrency and increased serial processing are substantial.  
Compared to the strictly data-parallel extreme on the right hand 
side, restricting the amount of concurrency to the width of the 
processor reduces the overall computational workload by 57%.   

Two factors contribute to these savings.  First, the reduced 
number of logical threads lowers the overall thread-setup 
overhead.  This includes instructions for loading the kernel 
parameters into registers, computing the offset of the 
threadblock’s first tile, the offset of the thread into that tile, etc.  
Second, the compiler can hoist operations out of the tile-
processing loop, further reducing the workload per input element.  

This threadblock serialization idiom is also particularly 
effective for recursive decompositions.  Fig. 3a illustrates the 
traditional recursive data-parallel decomposition for parallel 
reduction.  Each threadblock computes a partial reduction from its 
tile of b elements.  The host program further invokes logbn - 1 
reduction kernels to reduce these partial reductions into a single 
aggregate result.   

However, GPUs are only efficient when the problem size is 
large enough to saturate the processor.  This is rarely true for the 
interior of the reduction tree.  For example, the second level of a 
64M element reduction tree with branching factor b=1024 
contains only 64K elements.  Unfortunately the memory 
subsystem for the GTX480 only saturates for inputs larger than 
8M elements.  The second and third kernel invocations leave the 
GPU undersubscribed.  Only the first kernel instance is capable of 
fully utilizing the processor. 

                                                                 
2 We normalize instruction counts per thread (as opposed to SIMD 

instructions per warp). 

 
 

(a) Data-parallel threadblock decomposition (one tile per threadblock) 

 
 

(b) Threadblock serialization (each threadblock iteratively processes multiple tiles) 
 

Fig. 1.  Example threadblock decompositions for a data-parallel transformation.   
Tile size b=4 elements. 

Fig. 2.  Instruction overhead vs. threadblock granularity 
(GTX480) 
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As an alternative, Fig. 3b illustrates the threadblock 
serialization idiom as applied to our reduction example [21].  In 
the first kernel, C threadblocks are given an even share of input 
tiles.  Each threadblock sequentially processes its tiles, 
maintaining the accumulated partial reduction locally until its last 
tile has been processed.  When C is a constant multiple of p, a 
single threadblock invoked by the second kernel can quickly 
reduce the C partial reductions output by the first kernel.  This 
approach requires less global data movement and finishes the 
inefficient part of parallel reduction as quickly as possible.     

The two-level threadblock serialization idiom extends to other 
cooperative, recursive parallelizations.  Fig. 2 also illustrates the 
effectiveness of threadblock serialization for the cooperative 
problems of global reduction, prefix sum, and multi-way 
partitioning (for radix sorting) [19, 20].  By only invoking as 
many threadblocks as can be actively resident on the processor, 
we demonstrate computational savings of 67% for reduction, 42% 
for prefix sum, and 27% for partitioning.  

4.2 Thread serialization 
In this subsection, we discuss the merits of granularity coarsening 
for local cooperation with the threadblock. When expressed at 
their finest granularity, the task dependences for many 
cooperative parallelizations comprise binary trees of 
communication through shared memory spaces.  Reduction and 
prefix sum are commonplace examples.  At each timestep, the 
expressed concurrency is geometrically decreasing (or 
increasing).  To illustrate, Fig. 4 presents a mapping of pairwise 
reduction onto parallel threads.  

Despite its simplicity and abundant concurrency, this 
parallelization is quite inefficient on GPU architecture.  Each of 
the b-1 reduction operators has an operand that needs to be 
written, synchronized, and read from shared memory. After 
performing an operator, threads must also evaluate a conditional 
to determine whether they will be active in the subsequent level.  

For example, a 1024-thread threadblock requires 4,224 thread-
instructions3 to reduce a tile of b=1024 elements. 

A much better fit is the generic, three-phase construction 
illustrated in Fig. 5.  Each phase seeks to either increase the 
amount of sequential work within a given storage class (e.g., 
registers, shared memory, etc.) or exploit a particular aspect of the 
abstract machine model (e.g., lock-step thread progress within the 
warp): 

1) Sequential reduction in registers.  This phase decouples 
the tile size b from the number of threads pthreadblock.  
Each thread loads b/pthreadblock items.  It is important that 
this phase be wide enough to saturate the global memory 
subsystem with requests.  The loaded elements are 
sequentially reduced in registers without read, write, and 
barrier instructions.   

2) Sequential reduction in shared memory.  We place the 
partials from the previous step into shared memory, 
barrier, and then reduce the parallelism to the SIMD 
width wSIMD of the processor core.  One warp then 
serially rakes4 over the shared partials for 
pthreadblock/wSIMD steps without write and barrier 
instructions.   

3) Cooperative, warp-synchronous reduction.  Finally, the 
single raking warp performs a synchronization-free, pair-
wise reduction in shared memory of the partial 
reductions computed in the previous phase.  We exploit 
the lock-step SIMD behavior of threads within the same 
warp to avoid explicit barrier synchronization.  

This construction only requires one barrier-synchronized 
exchange through shared memory that is accompanied by a single 

                                                                 
3 The actual width of the final five reduction levels is the warp-width 

wSIMD=32, regardless of deactivated threads.  
4 Raking [4] is a strategy for assigning a set of threads p to process a much 

larger data set.  Each thread is assigned an even-share of consecutive 
inputs to process serially, i.e., the stride between threads is p and the 
stride between elements for a given thread is 1. 

  
(a) logb-level tree: each threadblock processes one tile 

 
(b) Two-level: threadblocks are reused to process multiple tiles 

Fig. 3.  Example threadblock decompositions for global reduction.  Threadblocks are comprised of four threads.  Tile size b=4 elements. 
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Fig. 4.  Recursive, pair-wise parallelization of local threadblock reduction.  
Lighter dataflow arrows indicate partials left in registers  

Fig. 5.  Recursive, three-phase parallelization for locally reducing a tile of b = 
64 elements where pthreadblock = 16 and wSIMD = 4.  Lighter dataflow arrows 
indicate partials left in registers. 
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conditional for reducing the degree of parallelism.  All other steps 
are free of conditionals, and the bulk of the reduction operators 
(first phase) are free of any shared memory overhead.  Compared 
with the pair-wise example, this three-phase construction only 
requires 1,440 thread-instructions to reduce a tile of b=1024 
elements using a 128-thread threadblock with wSIMD=32, a savings 
of 67%. 

This example of local reduction serves to illustrate the 
importance of expressing the “general shape” of cooperation from 
multiple algorithmic phases.  However, we do not want to bind 
these phases to any particular widths and depths when authoring 
our programs.  In this example, the tile size, threadblock size, and 
warp size are the unbound tuning parameters that ultimately 
dictate the number of steps to statically unroll each phase.  They 
also dictate the size and layout of shared memory needed for 

thread communication.  We prefer to bind these parameters after 
empirically tuning for a specific problem and target architecture.   

We also apply the same thread-serialization techniques for 
constructing local implementations of parallel prefix sum.  The 
ability for parallel threads to cooperatively reserve space within 
shared data structures is a fundamental aspect of parallel 
computing.  For GPU architecture, prefix sum is a much more 
efficient mechanism for implementing dynamic data placement 
than atomic instructions [18].  As a result of thread serialization, 
the Back40 implementations of local prefix sum exhibit a 44% 
reduction in dynamic instruction overhead from the recursive 
pairwise implementation within CUDPP [6].   

5 TUNING VIA THE TYPE SYSTEM 
Our design idiom for tuning via the type system uses C++ support 
for template-based meta-programming to ease the burden of 
granularity selection and algorithmic choice.  We construct our 
parallel algorithms such that they can be specialized by tuning 
policy types.   

By parameterizing kernel subroutines with policy types, we 
can author the “general shape” of an implementation, leaving 
many of the performance-sensitive details unbound.  For example, 
we can use policy to specify the degree of parallelism, to govern 
algorithmic or threshold specialization, to dictate iteration and 
unrolling, and for declaring local variable types such as array 
sizes and shared memory layouts.  Kernel subroutines can be 
reused by binding them with different tuning configuration 
policies that co-optimize them for the specific problem at hand. 

Because the policy is statically known to the compiler, we 
often obviate the need for any runtime decision-making with each 
logical thread.  The cumulative overhead of runtime decision-
making (e.g., how many loads to unroll) is particularly costly on 
GPU-like architectures having tens or hundreds-of-thousands of 
resident threads.  

5.1 A simple example: data-parallel copy 
Consider data-parallel copy as a trivial example.  As one of the 
simplest stencil kernels, threads simply load elements from a 
global input array and write them to equivalent locations within 
output array.  Listing 1 illustrates a “concrete” tile-copying sub-
procedure in which a threadblock copies a tile of 32-bit floats.  
Each thread loads and stores exactly one float.   

In practice, the ostensibly-simple copy operation incorporates 
quite a few tuning decisions that are opaque in terms of their 
performance impact for any given architecture and problem type.  
Lines 2-14 in Listing 2 illustrate a parametric type Policy that can 
be specialized in the following tuning dimensions: 

a) The number of loads per thread per tile.  This allows us 
to increase the number of outstanding loads issued before 
stores at the expense of increased register pressure.  
Reasonable configurations include 20, 21, and 22 loads 
per thread per tile. 

b) The number of items per load.  Current NVIDIA GPUs 
support vector-loads of up to four component elements.  
Reasonable configurations include 20, 21, and 22 elements 
per vector load. 

c) The number of threads per threadblock.  Reasonable 
configurations include powers-of-twos ranging from 25 
to 210 threads. 

d) Work-stealing.  As algorithmic variants, we can either: 
(a) provide each threadblock with an even-share of input 
tiles; or (b) allow threadblocks to “steal” tiles of work 
using coarse-grained atomic-addition.  

Listing 1.  A straightforward kernel sub-procedure for threadblocks to 
copy a tile of 32-bit floats from one global array to another 

Template parameters:  None 
Formal parameters: 

• Global input and output arrays d_in, d_out 
• Offset tile_offset into d_in/d_out of the tile to be copied 
• Optional limit guarded_elements on the number of tile elements to 

copy  
Other: 

• Global variable thread_id for thread identifier 
• Global variable cta_size for threadblock-size in threads 

1 __device__ void CopyTile( 

2   float *d_in, 

3   float *d_out, 

4   size_t cta_offset, 

5   size_t guarded_elements = cta_size) 

6 { 

7   if (thread_id < guarded_elements) { 

8      

9     // Load tile data 

10     float data =  

11       d_in[tile_offset + thread_id]; 

12  

13     // Store tile data 

14     d_out[tile_offset + thread_id] = data; 

15   } 

16 } 

 

Listing 2.  A tuning policy type for data-parallel copy, followed by an 
example parameterization of that type specialized for large-problems of 
8-byte elements on the GF100 architecture. 

1 // Tuning policy type 

2 template < 

3   // Problem instance type parameters 

4   typename T, 

5   int ARCHITECTURE, 

6  

7   // Tunable parameters 

8   int LOG_THREADS, 

9   int LOG_LOAD_VEC_SIZE, 

10   int LOG_LOADS_PER_TILE, 

11   ld::CacheModifier READ_MODIFIER, 

12   st::CacheModifier WRITE_MODIFIER, 

13   bool WORK_STEALING> 

14     struct Policy; 

15  

16 // Example policy parameterization tuned 

17 // for 8-byte data, large-size problems  

18 typedef Policy<unsigned long long, GF100,   

19   8, 7, 1, 0, ld::cg, st::cg, true> 

20     LargeProblemPolicy8B; 

 



e) Caching directives.  These modifiers affect cache 
behavior during loads and stores.  Current NVIDIA 
GPUs expose up to four variants: default caching at L2 
and L1 levels; no caching; cache in global L2 using 
smaller cache lines; and tagging for preferential eviction. 

Listing 3 illustrates a templated copy subroutine that expresses the 
“general shape” of tile-copying.  This procedure is not bound to a 
specific type of copy-element.  In addition, each thread loads and 
stores a tunable number of elements.  Such tuning details are 
encapsulated within the template parameter type Policy.  
Furthermore, Listing 2 (lines 18-20) presents an example policy 
type instance that has been tuned for copying large lists of 8-byte 
elements. 

Fig. 6 illustrates the diversity of the corresponding 
performance landscape for the current NVIDIA GF100 

architecture (GTX480).  These tuning options enumerate a 
configuration space of 1,728 tuning variants per data type, per 
problem size.  We evaluate these specializations for a pair of 
“large” and “small” representative workloads: 128MB and 
128KB.  Furthermore, we explore the configuration space for 1-
byte, 2-byte, 4-byte, and 8-byte data types for each problem size.  
We normalize the throughputs of each tuning configuration 
against the maximum observed for its problem size and plot the 
resulting slowdown histograms. 

The large problem size (Fig. 6a) is representative of datasets 
large enough to saturate the memory subsystem.  In general, the 
GTX480 is somewhat forgiving at this problem size, i.e., it is 
skewed to the right.  On average, 25% of all configurations 
achieve more than 90% of the maximum achievable throughput 
(164 GB/s).  However, we observe that it is relatively much more 
difficult to achieve this performance when copying 1-byte 
characters.  Only 2% of configurations achieve more than 90% of 
maximum on 1B problem instances.   

The performance for the small problem size (Fig. 6b) is much 
more diverse.  Only 6% of all specializations fall within 90% of 
the maximum throughput (65 GB/s).  For the various problems 
discussed throughout this paper, we generally observe that it is 
comparatively harder to find tuning configurations that are well-
suited to small, fleeting workloads.  

We also observed the configurations corresponding to the 
straightforward implementation specified in Listing 1 were not 
particularly competitive.  For the large 128MB problems 
instances, the best 4-byte, 1-load, vector-1 configurations perform 
at less than 90% of maximum-achievable.  For the small 128KB 
instances, these configurations only muster 65% of maximum-
achievable.  It is not obvious to the programmer that this 
“concrete” implementation would perform so poorly. 

Finally, we use this tunable kernel to determine the 
maximum-achievable DRAM bandwidths for each of our three of 
our evaluation GPUs (GTX480, GTX280, and 9800 GTX+).  We 
use these throughputs, listed in Table 1, to evaluate the absolute 
performance of memory-bound implementations.  

  
 

(a) Large problem size = 128MB, max throughput = 164 GB/s 
 

(b) Small problem size = 128 KB, max throughput = 65 GB/s 
 
Fig. 6.  “Copy” kernel performance histograms of tuning configurations binned by normalized slowdown with respect to the maximum throughput achieved 
(NVIDIA GTX 480). 
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Listing 3.  A generalized, policy-based kernel sub-procedure for 
threadblocks to copy a tile of elements from one global array to another.   

Template parameters:   
• Tuning policy type Policy as per Listing 2 

Formal parameters: 
• Global input and output arrays d_in, d_out 
• Offset tile_offset into d_in/d_out of the tile to be copied 
• Optional limit guarded_elements on the number of tile elements to copy  

Other: 
• Device function LoadTileValid() for reading each thread’s tile portion 
• Device function StoreTileValid() for writing each thread’s tile portion 

1 template <typename Policy>  

2 __device__ void CopyTile( 

3   typename Policy::T *d_in, 

4   typename Policy::T *d_out, 

5   typename size_t tile_offset, 

6   typename size_t guarded_elements =  

7     Policy::ELEMENTS_PER_TILE) 

8 { 

9   // Tile data 

10   typename Policy::T  

11     data[1 << Policy::LOG_LOADS_PER_TILE] 

12         [1 << Policy::LOG_LOAD_VEC_SIZE]; 

13  

14   // Load tile 

15   LoadTileValid<Policy>( 

16     data, d_in + tile_offset, guarded_elements); 

17  

18   // Store tile 

19   StoreTileValid<Policy>( 

20     data, d_out + tile_offset, guarded_elements); 

21 }  

 

Table 1. Max achievable DRAM bandwidth (10
9
 Bytes/s) 

 GTX480 GTX280 9800 GTX+ 

Unidirectional (even-share) 163.4 135.6 67.8 

Unidirectional (steal) 168.6 63.6 42.6 

Bidirectional (even-share) 153.6 125.4 61.7 

Bidirectional (steal) 163.7 85.3 55.5 

 
 



5.2 Analysis of performance landscape across 
GPU architecture 
In this section, we explore the cumulative tuning landscape for 
several data-parallel and cooperative problems across the last 
three generations of NVIDIA GPU architecture.  Our evaluation is 
comprised of the following four benchmark problems: copy-
transform, reduction, prefix sum, and reduce-by-key5.  Global 
copy is the simplest performance proxy for any memory-bound 
data parallel transformation.  Prefix sum is a performance proxy 
for kernels that compute recurrence relations or partition data 
(e.g., sorting).  Reduce-by-key is a performance proxy for dataset 
contraction (e.g., list-compaction and duplicate-removal) and can 
be used to implement map-reduce computation (after mapping and 
sorting stages). 

Table 2 lists the kernels that comprise each benchmark and 
the dimensions along which we can tune each kernel.  For 
example, the reduce-by-key benchmark has three kernels, each of 
which can tuned by loads-per-thread, items-per-load, and number-
of-threads-per-threadblock (a, b, and c from the previous section).  
With three kernels and 54 tuning specializations per kernel, the 
benchmark has an overall tuning domain of 157,464 tuning 
configurations. 

Our investigation evaluates how different tuning policies 
respond to different problem instances (where a problem instance 
is a specific combination of data type, problem size, and GPU 
architecture).  We evaluate the performance of each tuning 
configuration across a sample space of 72 problem instances 
constructed from combinations of the following: 

• Four data types (1-byte, 2-byte, 4-byte, and 8-byte 
elements) 

                                                                 
5  Given a list of key-value pairs, reduce-by-key is analogous to a 
segmented reduction over the values where the segments are defined by 
regions of consecutive, identical keys. 

• Six problem sizes (128 KB, 512 KB, 2MB, 8MB, 32MB, 
and 128 MB) 

• Three GPU architectures (NVIDIA GF100, GT200, G92 
represented by GTX480, GTX280, and 9800 GTX+ 
GPUs) 

We are interested in gauging how performance varies between 
configurations as well as within configurations.  These two 
metrics intuitively correspond to the “strength” and “consistency” 
of individual tuning configurations, respectively. 

We normalize our performance samples to the interval [0,1] 
so that we may generalize behavior across problem instances.  For 
every problem instance, we identify the tuning configuration that 
provides the best sample performance.  (For example, reducing 
128 MB of 4-byte integers on GT200 maximally proceeds at 169 
GB/s.)  We then normalize the performance samples of all 
configurations for that problem instance in terms of relative 
slowdown against this “best” performance. 

We use the statistical metrics between-group variance (s2
B) 

and within-group variance (s2
W) for analyzing the diversities of 

configuration strength and consistency, respectively [10].  The 
between-group variance is a measure of the variability of 
configuration means around the grand mean.  The within-group 
variance is a weighted average of configuration variance, with 
weights determined by the number of problem instance samples in 
each configuration.  

Between-group analysis. Table 3 and Table 4 present the 
between-group and within-group variances, respectively.  The 
large ratios of s2

B/s2
W indicate that the broad majority of overall 

variation between pairings of configurations and problem 
instances is due to differences between configurations, i.e., certain 
configurations are innately better or worse than others.  The 
performance-slowdown histograms in Fig. 7 graphically illustrate 
the ample performance variation amongst tuning configurations 
by binning configurations by their average slowdown.   

Furthermore, Table 3 also reveals that some architectures are 
relatively more pliant than others.  For example, the variances 
among tuning configurations are much lower for problem 
instances on the GTX280 than for the newer GTX480, particularly 
for the reduction benchmark. 

Within-group analysis.  Despite being dwarfed by between-
groups variance, the within-groups variance s2

W is also fairly 
significant.  For example, the within-groups deviation sW for 
prefix sum across all GPUs is √0.6 = 24%.  This implies that 
performance is also strongly related to problem instance, and that 
it will be relatively difficult to find tuning configurations that are 
universally better than others.   

The histograms in Fig. 7 corroborate the absence of tuning 
configurations that perform well across the entire sample space of 
problem instances.  “Well-rounded” tuning configurations do not 
exist.  For example, no single configuration for copy averages 
more than 83% of the maximum-achievable performance across 
problem instances.  For reduction, prefix-sum, and reduce-by-key, 
the best all-purpose configurations only average 73%, 73%, and 
83% of what we can maximally achieve. 

5.3 Effectiveness of auto-tuning 
For large saturating problem sizes, we would like our memory-
bound problems (namely copy, reduction, and prefix sum) to 
proceed at the maximum-achievable DRAM bandwidth for each 
device.  Because of the heavily overlapped nature of the GPU, we 
would expect that all memory-bound specializations would yield 
equal performance.  Table 5 reveals this not to be the case.  It 
presents the average bandwidth utilization across pairings of 

Table 2. Performance-portability landscape benchmarks 

Benchmark Kernel tuning dimensions 
Tuning configs per 

problem instance 

Total sample 

evaluations 

Copy transform Copy: a, b, c, d, e 1,728 124,416 

Reduction 
Upsweep:    

Spine: 

a, b, c, d 

a, b, c 
8,748 104,976 

Prefix sum 

Upsweep: 

Spine: 

Downsweep: 

a, b, c 

a, b, c 

a, b, c 

157,464 11,337,408 

Reduce-by-key 

Upsweep: 

Spine: 

Downsweep: 

a, b, c 

a, b, c 

a, b, c 

157,464 11,337,408 

 

Table 3. Between-configs slowdown variance (s
2

B) 

 GTX 480 GTX 280 9800 GTX+ All GPUs 

Copy 0.52 0.08 0.48 0.40 

Reduction 0.74 0.15 0.31 0.41 

Prefix sum 0.58 0.42 0.31 0.83 

Reduce-by-key 0.53 0.38 0.25 0.91 

 

Table 4. Within-configs slowdown variance (s
2

W) 

 GTX480 GTX280 9800 GTX+ All GPUs 

Copy 0.03 0.04 0.14 0.07 

Reduction 0.03 0.04 0.11 0.06 

Prefix sum 0.03 0.02 0.09 0.06 

Reduce-by-key 0.01 0.01 0.03 0.02 

 



configurations with 128MB problem instances, normalized to the 
DRAM bandwidth presented in Table 1.  The three 
implementations that should be bandwidth-bound at this problem 
size are nowhere near maximum bandwidth utilization. 

However, our autotuning search is quite effective at finding 
specific configurations that perform at peak or near-peak 
bandwidth. Selecting among only the best-performing 
configurations for each of the 128MB problem instances, Table 6 
shows that we can identify policy configurations that perform 
exceptionally well for each data type (1B – 8B).  Even for our 
compute-bound problem (reduce-by-key), our best-performing 
configurations are more than twice as fast. 

We further illustrate the need for specialization by comparing 
our tuned global reduction kernels against those provided by the 
Thrust library of GPU primitives [27].  To this point, we have 
emphasized the mediocre performance of our average program 
variants.  This raises the question of whether our average 
specializations are representative of concrete implementations “in 
the wild.”  The Thrust implementation of global reduction is a 
good point of comparison because it shares the same overall 
parallelization strategy. 

Fig. 8 illustrates our autotuned reduction performance 
advantage over the Thrust implementation for both saturating 
128MB and fleeting 128KB problem instances.  For large, 
GF100-based problems instances, the Thrust performances align 
with our average configuration performance.  In relation, our 
tuned specializations achieve a harmonic mean speedup of 1.6x.   

Their large-problem performance is relatively much better for the 
older GT200 and G92 architectures.  We only achieve 1.14x and 
1.08x speedups for those GPUs, respectively. 

Fig. 8b illustrates the importance of autotuning for small 
problem sizes.  For this subset of problem instances, the Thrust 
performance is representative of our grand-mean configuration 
slowdown of 0.6 across all reduction problems.  In relation, our 
tuned specializations achieve harmonic mean speedups of 2.4x, 
2.6x, and 3.9x for the GF100, GT200, and G92 architectures, 
respectively. 

6 CONCLUSION 
In constructing the Back40 library of high performance CUDA 
primitives, it became clear that “concrete” implementations were 
simply not performance portable.  Our tuning analyses illustrated 
the dire performance portability landscapes of such program 
instances, showing them to be incapable of delivering good 
performance across the domain of problem instances they might 
be expected to address.  A recurring observation is the difficulty 
of achieving good performance from a single implementation on 
both large, saturating workloads and small, fleeting workloads.     

To achieve performance portability, we developed a design 
methodology for policy-based tuning where reusable components 
express the “general shape” of their solution, leaving many of the 
performance sensitive details unbound.  By incorporating policy 
types within procedural interfaces, we enable the co-optimization 
reusable software components with the enclosing kernel 

  
 

(a) Global copy 
 

 
(b) Global reduction 

 

 
 

(a) Global prefix sum 

 
 

(b) Global reduce-by-key 
 
Fig. 7.  Performance histograms of tuning configuration “strength.”  Configurations are binned by their harmonic mean slowdown across all problem 
instances. (For a specific problem instance, the slowdown for a given tuning configuration is relative to the maximum performance achieved by any 
configuration on that problem instance.) 
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Table 5. Average bandwidth utilization of all 128MB 

tuning configurations 

 GTX480 GTX280 9800 GTX+ 

Copy 0.72 0.43 0.45 

Reduction 0.61 0.32 0.35 

Prefix sum 0.59 0.46 0.47 

Reduce-by-key 0.31 0.16 0.16 
 

Table 6. Average bandwidth utilization of best 128MB 

tuning configurations 

 GTX480 GTX280 9800 GTX+ 

Copy 1.00 0.99 0.99 

Reduction 0.96 0.88 0.95 

Prefix sum 0.97 0.97 0.94 

Reduce-by-key 0.67 0.38 0.33 
 

 



application.  We found the C++ type system to be useful as a 
mechanism for specializing code generation via template 
metaprogramming, particularly as many tuning decisions affect 
data structure and layout within shared memory.  Our autotuning 
results demonstrate the ability to consistently discover excellent 
specializations for the specific problem instance at hand. 

An important application of such specialization is the 
selection of the proper granularity of concurrent work.  We 
showed that parallelizations that achieve a proper balance between 
serial and parallel phases of computation provide significantly 
better efficiency and performance than those that simply express 
all available concurrency.   
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(a) 128 MB problem instances 
 

(b) 128 KB problem instances 
 

Fig. 8.  Global reduction performance comparison between our autotuned and the “concrete” Thrust implementations. 
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