
Hierarchical Face Clustering on Polygonal Surfaces

Michael Garland∗ Andrew Willmott† Paul S. Heckbert‡

Abstract

Many graphics applications, and interactive systems in par-
ticular, rely on hierarchical surface representations to effi-
ciently process very complex models. Considerable atten-
tion has been focused on hierarchies of surface approxima-
tions and their construction via automatic surface simplifica-
tion. Such representations have proven effective for adapting
the level of detail used in real time display systems. How-
ever, other applications such as ray tracing, collision detec-
tion, and radiosity benefit from an alternative multiresolu-
tion framework: hierarchical partitions of the original sur-
face geometry.
We present a new method for representing a hierarchy of

regions on a polygonal surface which partition that surface
dinto a set of face clusters. These clusters, which are con-
nected sets of faces, represent the aggregate properties of
the original surface at different scales rather than providing
geometric approximations of varying complexity. We also
describe the combination of an effective error metric and a
novel algorithm for constructing these hierarchies.

CR Categories: I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling—surface and object
representations

Keywords: face clusters, dual contraction, quadric error
metrics,surface simplification, spatial data structures

1 INTRODUCTION

Modern graphics and visualization systems are often called
upon to process and display scenes of tremendous geomet-
ric complexity. Individual surface models acquired from the
physical world with laser scanners, for example, might easily
contain a million or more polygonal faces. Such complexity
is often useful. For instance, visualizations of architectural
spaces can achieve a much more convincing level of realism
if intricately detailed models are available. However, this
realism comes at a price: computations involving models of
such complexity are typically very expensive. To address
this fundamental tradeoff between accuracy and efficiency,
we must have effective methods to control the level of detail
at which we process and display surface models. This need
is particularly acute for interactive or real-time applications,
which must maintain suitable update rates.
In recent years, considerable progress has been made on

developing techniques for the automatic simplification of
highly detailed polygonal models into faithful approxima-
tions using fewer polygons [9]. Methods are now available
that can take excessively detailed models, say from laser
range scanners, medical data sources, or CAD systems, and
produce more economical models which approximately de-
scribe the same shape with far fewer polygons. Simplifica-
tion algorithms have also been used to construct progressive

∗University of Illinois at Urbana–Champaign. garland@uiuc.edu
†Carnegie Mellon University. ajw@cs.cmu.edu
‡Carnegie Mellon University. ph@cs.cmu.edu

representations of polygonal surfaces [14] and real-time dis-
play systems which can adapt the level of detail of the surface
to fit the current viewing conditions [15, 23, 31]. All these
prior methods focus on the problem of generating geomet-
ric approximations of the original surface. However, there is
another class of applications where a hierarchical represen-
tation of the original surface itself is more suitable than a
family of approximate surfaces.
We have developed an algorithm which produces a hier-

archy of regions on a given polygonal surface. Each region
is a connected set of faces, which we term a face cluster,
and they completely partition the input surface. As we will
see, our method is closely related to prior surface simpli-
fication methods. However, unlike simplification methods,
this algorithm does not alter the original surface geometry
in any way, nor does it produce any new approximate sur-
faces. Instead, it associates aggregate properties, such as a
representative surface normal for instance, with each clus-
ter in the hierarchy, thus representing the structure of the
surface at multiple scales. The primary contributions of the
work described in this paper are (1) a new hierarchical struc-
ture for representing surface partitions, (2) a novel algorithm
for constructing these hierarchies, and (3) an effective error
metric to guide this construction process.
Various computational tasks in graphics and visualization

systems can potentially benefit from the face cluster hier-
archies produced by our method. By enclosing each face
cluster with a bounding volume, we can produce hierarchies
suitable for ray tracing, collision detection, or other algo-
rithms which perform spatial queries. Alternatively, we can
use the cluster hierarchies as a basis for efficient simulation
algorithms. For example, hierarchical finite element meth-
ods often subdivide the input geometry to an appropriate
level of detail to obtain an accurate solution. By using our
face cluster hierarchies, we can formulate methods which
can conceptually “unsubdivide” and treat entire surface re-
gions as a single unit. We previously described how radiosity
simulation [30] can be made dramatically more efficient by
applying such hierarchies but did not detail how they could
be constructed. Here we focus on the precise representation
and efficient construction of face cluster hierarchies.

2 SURFACE HIERARCHIES

For applications such as real-time rendering, we typically de-
sire multiresolution models that can provide geometric ap-
proximations of the original surface. Depending on the view-
ing conditions, the run-time system will select the appropri-
ate geometric level of detail to display. However, there are
other applications in which we are more interested in the ag-
gregate properties of surface regions. Rather than extracting
a single approximation from the hierarchy, we would like to
perform computations using the hierarchy itself. For appli-
cations which rely heavily on spatial queries, we might like
a hierarchy of bounding volumes that enclose successively
larger regions of the surface. For other simulation-oriented
applications (e.g., finite element methods), we might want



to compute coarse solutions over entire surface regions, suc-
cessively refining the result by considering smaller scale el-
ements in selected areas. We might, for instance, want to
approximate successively larger regions of the surface with
planar elements.

2.1 Vertex Hierarchies from Simplification

Most current surface simplification algorithms begin with a
triangulated polygonal surface and iteratively apply a simpli-
fication operator to remove elements at each step. One such
operator, which has become an increasingly popular choice,
is edge contraction (see Figure 1). Thus, starting with the

contract

vi

vj
v–

Figure 1: Edge (vi,vj) is contracted; two faces and one
vertex are removed.

original model, iterative contraction algorithms generate a
sequence of approximate surfaces until arriving at a final
approximation.
When we generate approximations using iterative contrac-

tion, we also construct a vertex hierarchy. This is a bi-
nary tree whose leaves are the vertices of the original model.
When we contract two vertices together, we create a new
node in the tree and make the two vertices being contracted
its children. The resulting tree provides a means of encoding
the dependencies in the sequence of contractions built dur-
ing simplification and has been used successfully for view-
dependent reconstruction of surface approximations at run
time [15, 23, 31]. But we can also think of them as hierar-
chies of vertex neighborhoods [9, 10]. At the leaves of the
tree are the vertices of the original model: their neighbor-
hoods correspond to their adjacent faces. When we con-
tract two vertices together, we merge their neighborhoods
and construct a new approximate neighborhood for the re-
sulting vertex. Each node in the hierarchy corresponds to a
disjoint set of vertices on the original surface. Consequently,
it also corresponds to a surface region that is the union of
the neighborhoods of all the vertices in its set. Note that
very similar hierarchies result from the iterative application
of other simplification operators, such as vertex removal.
This hierarchy of neighborhoods is itself a useful construc-

tion. For instance, Kobbelt et al. [20] and Lee et al. [21] use
the resulting hierarchy to define a multiresolution param-
eterization of the surface. This parameterization facilitates
applications such as multiresolution surface editing and mor-
phing.
While useful, these hierarchical neighborhoods have some

drawbacks for certain applications. First and foremost, local
neighborhoods high in the tree are generally nonplanar (e.g.,
cone-shaped with the vertex at the apex). This is because
any planar vertex neighborhood will be removed very early
during simplification. In addition, the set of triangles on
the original surface corresponding to a particular vertex in
the hierarchy may have a very irregular shape. For some
applications it is preferable that the shape of this region be
regular, yet most standard simplification algorithms provide
no means to control this shape. They are also generally
unsuitable for building spatial data structures: the bounding

box of a node is not guaranteed to fully contain the surface
of its children.

2.2 Face Hierarchies from Clustering

Face hierarchies, which are the focus of this paper, are a nat-
ural alternative to vertex hierarchies, and their properties
complement those of vertex hierarchies very nicely. Instead
of iteratively merging vertex neighborhoods, we can itera-
tively cluster neighboring groups of faces. This allows us to
avoid some of the specific drawbacks of vertex hierarchies
listed above. Because the clusters are disjoint sets of faces,
they partition the surface in a well-defined way and conse-
quently have a well-defined surface area and perimeter. Face
clusters are also more likely to have a single normal which
is a good match for the surface normals of the faces in the
cluster, and thus be more likely to be nearly planar.
To highlight the difference between these kinds of hierar-

chies, consider the example of a cube. Near the root of a
vertex hierarchy, there will be a level at which we have eight
“conical” neighborhoods, one for each corner of the cube.
In contrast, near the top of a face hierarchy we will have
6 planar face clusters, one for each face of the cube. If we
are trying to formulate a single planar approximating ele-
ment, or a single normal for the entire region, we will get a
much better result with the face hierarchies than with the
vertex hierarchies. And because the surface geometry never
changes, we can trivially guarantee that bounding volumes
within the hierarchy fully enclose the surface of all the nodes
below them.

3 FACE CLUSTERING ALGORITHM

To construct a face hierarchy, we begin by forming the
dual graph of the surface. The dual graph is defined by map-
ping every face of the surface to a node in the dual graph,
and connecting two dual nodes by an edge if the correspond-
ing faces are adjacent on the surface. While the algorithm
we present can be applied to non-manifolds, we will assume
that the surface is a manifold with boundary1 for efficiency
reasons. Consequently, every surface edge has at most 2 ad-
jacent faces. This guarantees that the complexity of the dual
graph will not be too great; the number of dual edges will
be no greater than the number of edges in the surface mesh.
To simplify the discussion, we will also assume that all input
polygons have been triangulated; thus, every dual node will
have at most 3 neighbors.
In the dual graph, each node will correspond to a face

cluster : a connected set of faces that have been grouped
together. For the initial dual graph, each cluster consists
of a single face of the input model, and these clusters will
form the leaves of the hierarchy. An edge contraction in this
graph merges two dual nodes into one. This corresponds to
grouping their associated faces, which must necessarily be
adjacent, into a single cluster. Thus in general, dual edge
contraction corresponds to merging two adjacent face clus-
ters into a single cluster. Figure 2 illustrates a simple exam-
ple. The underlying mesh and the dual graph are shown in
dashed and solid lines, respectively. On the left is a mesh
where each dual node corresponds to a single face; in other
words, each face is its own cluster. After contracting a single

1Recall that a manifold with boundary is a surface all of whose
points have a neighborhood which is topologically equivalent to a
disk or half-disk.



contract

Figure 2: Edge contraction in the dual graph (shown with
solid lines). The two faces of the surface (shown with dashed
lines) corresponding to the endpoints of the dual edge are
merged to form a single face cluster.

dual edge, the two darkened triangles have been merged into
a single cluster.
To construct a complete hierarchy, we use a simple greedy

procedure very similar to existing simplification algorithms.
Each dual edge is assigned a “cost” of contraction, and the
system iteratively contracts the dual edge of least cost. After
each iteration i, we will have constructed a partition N i of
the surface into disjoint sets of connected faces. This is in
contrast to simplification, where at each iteration we would
have constructed an approximate surface.
Let us emphasize that the geometry of the original surface

is not altered in any way by this clustering process; every
vertex remains in its original position and the connectivity
of the surface mesh is unchanged. Instead, we begin with
an initial surface partition where every face belongs to its
own singleton cluster. The process of iterative dual con-
traction produces a sequence of partitions with successively
fewer clusters. If run to completion, this will produce a sin-
gle face cluster for each connected component of the surface.
Also note that while clusters are always connected sets of
faces, they need not be simple — they may have holes.

Figure 3: Part of a face hierarchy superimposed on the local
geometry. The four clusters at the bottom are merged into
one root cluster at the top.

Just as with iterative edge contraction, iterative dual con-
traction produces a natural hierarchy. When two dual nodes
are contracted together (i.e., two face clusters are merged),
we can make them both children of their new parent node
which represents the union of their associated clusters. See
Figure 3 for a simple example. At the bottom of the hier-
archy are four face clusters, each of which already contain
two or three faces. The two leftmost clusters are merged
together, forming a single parent node. The two rightmost
clusters are also merged. The two parent clusters, which

together partition the mesh into two disjoint sets of faces,
are merged together to produce a single root cluster which
spans the entire mesh.

3.1 Related Clustering Methods

Iterative clustering, as a general class of algorithms, has been
in use for decades [1]. While a substantial number of algo-
rithms have been developed, most appear only tangentially
related to the problem of building face cluster hierarchies
on surfaces. In particular, most clustering algorithms have
focused on the problem of clustering point sets, frequently
in high dimensions, rather than clustering surface elements.
And since surface elements possess adjacency and orienta-
tion which point sets do not, they require a different sort of
clustering approach.
The process of face clustering which we have just de-

scribed is closely related to the simplification algorithm of
Kalvin and Taylor [19]. They also partitioned the surface
into a set of disjoint face clusters, or “superfaces.” Their
algorithm was based on growing a single cluster around a
random seed face, adding one face at a time until the cluster
exceeded a planarity threshold. In contrast, our algorithm is
based on pairwise cluster merging. The primary advantage
of pairwise merging is that it produces a hierarchical struc-
ture of clusters rather than a single static partition. It also
avoids the need to designate special seed faces.
DeRose et al. [7] proposed a related algorithm for gener-

ating hierarchies of bounding boxes on subdivision surfaces
to support collision detection. Given an initial quadrilateral
mesh, they iteratively merge a maximal independent set of
adjoining clusters until only a single cluster remains. Since
no criterion, other than adjacency, is used to select which
clusters to merge, the individual clusters may or may not
contain roughly coplanar elements. Faugeras and Hebert [8]
iteratively merged regions of range images in order to seg-
ment them for approximation by planar or quadric patches.
Delingette [6] used a geometric construction based on

the dual graph, which he called simplex meshes, to repre-
sent surfaces during reconstruction. Finally, Willersinn and
Kropatsch [29] used the method of dual edge contraction to
construct irregular image pyramids. While this method is
designed for an entirely different domain — images rather
than surfaces — it uses the same formalism of iterative dual
contraction thus producing a hierarchy of pixel regions.

3.2 Dual Quadric Metric

In order to evaluate the cost of a dual contraction, we need
some idea of what qualities a face cluster should have. Natu-
rally, there are many potential criteria from which to choose.
But for many applications, a good criterion is the planarity
of the cluster. This means that a given face cluster can be ap-
proximated by a planar element without undue inaccuracy.
We will adopt planarity as our primary criterion, modified
by selected bias terms discussed in succeeding sections. As
we will see, this planarity criterion can be expressed using a
dual form of the quadric error metric [11, 10].
Every cluster has an associated set of faces {f1, . . . , fn}

and a set of points {v1, . . . ,vk} determined by the vertices
of these faces. Let us suppose that we want to find the least
squares best fit plane to this set of points. For a plane spec-
ified by a unit normal n and a scalar offset d, the distance
of a point v to this plane is nTv+ d. The fit error of a given
plane nTv + d = 0 is the average squared distance of all the



points in the cluster to the plane

Efit =
1

k

k∑
i=1

(nTvi + d)2 (1)

The least squares best plane is the one which minimizes this
error. Notice that this error formula is nearly identical to
the error metric used in quadric-based simplification [11, 10].
Aside from the averaging factor, the sole difference is that we
are summing over a set of points with a fixed normal rather
than a set of normals with a fixed point. We can define a fit
quadric

Pi = (Ai,bi, ci) = (vivi
T,vi, 1) (2)

Pi(n, d) = nTAin+ 2bi
T(dn) + cid

2 (3)

which requires ten coefficients to represent the symmetric
3×3 matrix A, the 3-vector b, and the scalar c. Now, we
can expand and rewrite the inner term of Efit

(nTvi + d)2 = (nTvi + d)(vi
Tn+ d)

= nT(vivi
T)n+ 2dnTvi + d2 (4)

so that we can evaluate this error using a corresponding set
of quadrics:

Efit =
1

k

∑
i

Pi(n, d) =
1

k

(∑
i

Pi

)
(n, d) (5)

where the addition of quadrics is defined by component-wise
addition of the constituent matrices, vectors, and scalars.
Every dual node will have an associated fit quadric P

and a best-fit plane (n, d) such that P (n, d) measures the
planarity of the cluster associated with the node. The cost
of contracting two dual nodes together is reflected by the
sum of the fit quadrics of each node (Pi + Pj)(n, d). Note
that the form of this dual quadric error (3) differs slightly
from the original due to the presence of the d and d2 terms.
This kind of least squares planarity measure is of course

quite common. For example, Faugeras and Hebert [8] used
it in their region merging algorithm. However, we believe its
formulation as a quadric error metric is novel, and is critical
for the overall efficiency of the algorithm. [19] used a closely
related planarity metric which measured the maximum dis-
tance of any point to the plane, as opposed to the average
squared distance. They attempted to create clusters which
would respect a given L∞ error bound whereas we attempt
to minimize an L2 error for a given number of clusters.
Finding the optimal plane which minimizes P (n, d) is not

quite as simple as finding the optimum of the original quadric
metric. The standard technique, based on principal compo-
nent analysis (PCA) [18], is to construct the sample covari-
ance matrix:

Z =
1

k − 1
k∑

i=1

(vi − v̄)(vi − v̄)T (6)

where v̄ is the mean of the vertices v̄ =
(∑

i vi

)
/k. The

three eigenvectors of the matrix Z determine a local frame
with v̄ as the origin. The eigenvector corresponding to the
smallest eigenvalue is the normal of the least squares best
plane through the set of points {vi}. This method, which is
identical to the least squares method of normal equations,

is frequently used to estimate or define local tangent planes
[16, 22, 5] when reconstructing surfaces from sets of points.
Note that the normal computed in this fashion is only unique
up to sign. In practice, it is helpful to track the average
normal n̄ of all the faces in the cluster to resolve this sign
ambiguity. For the remainder of the discussion, we will drop
the 1/(k − 1) averaging factor from the covariance matrix
formula. This has no effect on the algorithm because we
are only interested in the eigenvectors of Z and the relative
scales of its eigenvalues.
The covariance matrix Z is symmetric and positive semi-

definite; thus its eigenvalues will always be real and non-
negative. And note that, as long as the points vi − v̄ span
three dimensional space, it will have three non-zero eigen-
values. Since the points vi form the vertices of a set of
triangles, we know that they must at minimum span a two
dimensional space, and thus Z has at most one zero eigen-
value. Consequently, we can always successfully derive three
orthogonal vectors for our local frame. However, if two or
more of the eigenvalues are equal, the optimal fitting plane is
not uniquely defined. For example, all three eigenvalues will
be equal if the points are uniformly distributed on a sphere.
In such cases, we must simply choose any one of the possible
orientations for the plane.
Looking at the definition of Z, we might expect that it

can be expressed in terms of the fit quadric P , and this is
indeed the case. If we expand the equation for Z and collect
terms, we find that

Z =
∑

vivi
T− k(v̄v̄T) (7)

= A − bbT

c
(8)

Thus, the optimal plane through the set of points can be
computed directly from the corresponding fit quadric P . Its
normal n will be the eigenvector of A − bbT/c correspond-
ing to its smallest eigenvalue, and if we make the standard
assumption that the plane passes through the mean, then
d = −nTv̄ = −nTb/c.

3.3 Orientation Bias

Minimizing the planarity term Efit will naturally tend to
merge clusters which are collectively nearly planar. However,
a surface may locally fold back on itself. It will seem nearly
planar, but the normal of the optimal plane will not be a
good fit for all the surface normals in the region. For some
applications, this may be irrelevant, but for many others it is
a problem we would like to avoid. To combat this problem,
we will also use an additional error term which measures the
average deviation of the plane normal n from the surface
normals:

Edir =
1

w

∑
i

wi(1− nTni)
2 (9)

where wi is the area of face fi and w =
∑

i wi is the total
area of the face cluster. We can write this metric as a quadric
as well

Edir =
1

w

∑
i

wiRi(n) =
1

w

(∑
i

wiRi

)
(n) (10)

where

Ri = (Di, ei, fi) = (nini
T,−ni, 1) (11)



(a) Original 11,036 clusters (b) 6000 clusters (c) 1000 clusters

Figure 4: Face cluster partitions produced by iterative pairwise merging.

and

Ri(n) = nTDin+ 2ei
Tn+ fi (12)

Kalvin and Taylor [19] proposed a related “face-axis rule”
which limited the range of orientations permitted within a
cluster. As with our planarity metric, the primary differ-
ence is that we use the average deviation as a penalty rather
than placing a bound on the maximum deviation. It is this
formulation that allows us to use the quadric metric rep-
resentation. Rather than having to traverse a list of faces
every time we evaluate errors, we merely need to evaluate
the value of the quadric.
Given these error metrics, the clustering algorithm has a

very simple form. For every initial dual node, it computes
quadrics P and R. And for every initial dual edge, we sum
the quadrics of the endpoints, find the optimal plane, and
evaluate its error as Efit + Edir. Following this initializa-
tion step, we place all dual edges in a heap keyed on cost,
and greedily contract the minimal cost edge. Every time we
contract two nodes together, we assign the quadrics of the
resulting node to be the sums Pi+Pj and Ri+Rj and update
the costs for each edge connected to the resulting node.
Some examples of the results produced by this algorithm

are shown in Figure 4. The original model (a) has 11,036
faces, each of which corresponds to an individual cluster.
The partition of the surface shown in (b) contains only 6000
clusters. Note how the clusters are growing along the cylin-
drical parts of the surface and curving along the rounded
parts. This effect is even more apparent in partition (c) con-
taining 1000 clusters. Also note how each planar region has
been grouped into a single cluster. As clustering proceeds,
the regions will expand over more and more of the surface.
Naturally, at some point an individual region may no longer
be well-approximated by any plane, since it corresponds to
a significant part of the model. If run to completion, the al-
gorithm will produce a final root cluster which contains the
entire surface.

3.4 Compact Shape Bias

If planarity is our only clustering criterion, then the algo-
rithm described above performs quite well. However, there
are applications where we are also interested in the shape of
these regions. In particular, we might want them to have a

fairly compact shape; in other words, we might like each clus-
ter to be as nearly circular as possible. For example, using
long skinny regions in radiosity simulation would greatly in-
crease the likelihood of a shadow discontinuity falling across
the cluster. Irregularly shaped regions are problematic in
applications such as simplification where we might want to
retessellate clusters [19]. They also interfere with the con-
struction of tight-fitting bounding volumes. Fortunately, it
is fairly easy to add a simple compactness heuristic which
significantly improves the regularity of the clusters.
Given a cluster with area w and perimeter ρ, we define the

irregularity γ of the cluster as a ratio of its squared perimeter
ρ2 to its area w

γ =
ρ2

4πw
(13)

This can also be interpreted as the ratio of the squared
perimeter ρ2 to the squared perimeter of a circle with area
w. A circle will have irregularity γ = 1 and larger values of
γ correspond to more irregular (less compact) regions. This
definition of irregularity is fairly natural and has been widely
used in fields ranging from image processing [17] to the anal-
ysis of U.S. Congressional districts to detect gerrymandering
[24]. Kalvin and Taylor [19] used this definition of irregular-
ity (without the 4π term) for directing the construction of
superfaces for simplification.
Now suppose we have have two adjacent clusters with ir-

regularity γ1 and γ2, respectively. Let γ be the irregularity
of the cluster formed by merging them together. We define
the shape penalty as the relative change in irregularity due
to merging the two regions together

Eshape =
γ −max(γ1, γ2)

γ
(14)

If the irregularity of the cluster arising from a dual contrac-
tion is worse than the two original clusters, that contraction
will incur a penalty (Eshape > 0). On the other hand, if
the irregularity improves it will incur a negative penalty, or
bonus. Based on our experience, requiring the irregularity
to improve at each iteration over-constrains the clustering
algorithm and leads to bad results. It can also lead to cases
where the greedy algorithm cannot make progress because
every possible contraction would result in more irregular re-
gions. No doubt part of the problem is due to the fact that



(a) No shape bias

(b) With bias

Figure 5: Face cluster partitions of the cow model, with
1000 clusters each. The shape bias produces much more
compactly shaped clusters.

we are using a greedy algorithm which only looks one step
ahead. Nevertheless, within the framework of greedy con-
traction, using a penalty term such as Eshape seems to be
more effective.

In order to compute this shape penalty, we need to know
both the area and the perimeter of our clusters. Clearly, the
area is quite easy to track; it is merely the sum w = w1+w2

of the constituent areas. While the perimeters are not addi-
tive, we can track them quite simply. For each cluster, we
record its perimeter ρi in the relevant dual node. When two
clusters are merged, the perimeter of the resulting cluster
will be the sum of the perimeters of the constituent clus-
ters minus twice the length of the boundary which sepa-
rated them. We associate these boundary lengths with the
corresponding dual edges. This allows us to compute the
perimeter of the merged cluster directly from the perimeters
of the merging clusters and the length associated with the
dual edge being contracted.

Figure 5 demonstrates the effect of using the additional
shape penalty. Clustering without bias (a) can produce
highly irregular regions. Note the clusters that stretch all
along the rear leg. In terms of finding clusters which are
best fit by a plane, this behavior is desirable, but it does
not produce compact regions. In contrast, when we use the
shape bias term (b), the algorithm produces very regularly
shaped regions.

3.5 Combined Error Metric

To produce the total error metric for our clustering algo-
rithm, we combine the planarity metric Efit with the two
bias terms Edir and Eshape. The cost of a dual contraction
will be determined by the error metric

E = Efit + α1Edir + α2Eshape (15)

where α1 and α2 are constants which must be chosen by the
user. For the results reported here and in the description of
our companion radiosity algorithm [30], we have simply cho-
sen the values α1 = 1 and α2 = 0 when the shape bias is dis-
abled and α2 = 1 when the shape bias is enabled. However, a
more careful selection of coefficients might potentially result
in improved results. Assuming that the planarity term Efit is
meant to be the dominant term, we could normalize the error
be choosing values for α1, α2 which are some user-specified
fraction of the diameter2 of the model. Alternatively, if reg-
ularity of region shape is the paramount concern, we would
want to select a substantially larger value for α2.

4 APPLICATIONS

We believe that the face hierarchies produced by our clus-
tering algorithm are potentially useful in several application
areas. In particular, they are intended for use in applications
which are more concerned with the aggregate properties of
surface regions rather than their exact geometry.

4.1 Distance & Intersection Queries

One natural application of these face hierarchies is for con-
structing hierarchical bounding volumes. Recall that, for
each cluster in the hierarchy, we compute a best fit plane.
Given this plane, it is a fairly simple task to compute an
oriented bounding box which tightly encloses the cluster. A
simple, but relatively inefficient, method is to enumerate all
the points in the cluster, project into the local frame defined
by the plane, and compute an axis-aligned bounding box in
this local frame. Alternatively, we can avoid having to tra-
verse large sets of points by tracking the convex hull [25] of
the point set [12].
Hierarchies of oriented boxes such as this can be used to

efficiently measure the distance from a point to a surface, an
operation common in many modeling systems. They are also
an effective means of accelerating the kind of spatial queries
common in applications such as ray tracing [2]. They can
be constructed over both curves [3] and surfaces [4, 12]. In
contrast to spatial partitions such as octrees [27], hierarchies
which are attached to the surface, like those produced by our
algorithm, are guaranteed to have a size linear in the size of
the input model [4].

4.2 Collision Detection

Another natural application for this bounding box hierarchy
is collision detection, which finds uses in a number of areas,
from physical simulation to haptic interfaces. Indeed, the
set of bounding boxes constructed from our face cluster hi-
erarchy is very similar to the OBBTree structure introduced
by Gottschalk et al. [12]. They also used PCA to compute
best fit planes, and thus oriented bounding boxes. However,
they produced the vertex sets by a top–down partition of the

2The diameter of a surface is the distance between the pair of
points on the surface which are farthest apart.



vertices of the original model. In contrast, our clustering al-
gorithm computes a bottom–up hierarchical partition of the
surface and can subsequently derive bounding boxes for each
region. This provides an interesting additional benefit. By
design, our hierarchies produce regions which are, to the ex-
tent possible, well approximated by a plane. This means
that, except at the very top of the hierarchy, most interior
nodes will correspond to surface regions with a fairly well-
defined orientation. Thus, we can approximate collisions
against the object with collisions against bounding boxes,
and the normals of the associated planes will actually al-
low us to predict the change in motion resulting from the
collision.
Another related hierarchical representation useful for col-

lision detection is the BOXTREE developed by Barequet
et al. [4]. It also builds a bottom–up hierarchy of boxes by
merging “adjacent” boxes. However, their algorithm is much
more focused on the properties of the bounding boxes rather
than the surface regions being bounded. Their definition of
box adjacency is based on spatial overlap rather than the
connectivity of corresponding regions on the surface. And
they rank pairs of boxes for merging based on properties of
the resulting boxes, such as volume, rather than any prop-
erty of the local surface.

4.3 Surface Simplification

Our algorithm can also easily be used for surface simplifi-
cation. Following Kalvin and Taylor [19], we can partition
the surface into clusters, simplify their boundaries, and re-
triangulate the resulting simplified clusters. The results of
such a system would likely be similar to Kalvin and Taylor’s
“Superfaces” algorithm, with some key differences. While
Superfaces provides guaranteed bounds on the maximum de-
viation of any point from its approximating plane, our dual
quadric error metric seeks to minimize the average deviation
without any guaranteed bounds on the maximum.

4.4 Multiresolution Radiosity

Radiosity is commonly used to simulate global illumina-
tion in diffuse environments — interactive architectural
walkthroughs are a particularly popular application area.
It is also a computationally intensive process that can
benefit enormously from hierarchical representations. We
have shown elsewhere [30] that face cluster hierarchies con-
structed using the algorithm developed here can be used to
provide an effective means for accelerating such simulations.
The standard hierarchical radiosity method [13] has a time

complexity of O(n + k2) for scenes containing k polygons
and for which n elements are necessary for accurate simu-
lation. The initial input polygons can be adaptively sub-
divided, producing a hierarchy of surface elements. These
methods allow light transport to be simulated at an appro-
priate level of detail. Nearby surface patches can interact at
a fairly fine grain while interactions between distant patches
can be represented at a coarser level. While efficient for
simple scenes where n � k, it is not as effective for very
complex scenes where objects contain excess geometric de-
tail, and hence n � k. To handle complex scenes, we need
to group input polygons into higher-level clusters in addition
to allowing subdivision of input polygons, thus eliminating
the k2 term from the time complexity. Consider the scene
shown in Figure 9 which contains several geometrically com-
plex models. The serpentine dragon on the table, for exam-
ple, contains 870,000 triangles. But given its relatively small

100000 200000 300000

Faces in Model

10

20

30

40

R
un

ni
ng

 T
im

e 
(s

)

Initialization
Clustering
B-Box Construction

Figure 6: Running time of clustering algorithm.

size, an accurate radiosity solution could be computed on a
much coarser set of surface patches than these input trian-
gles.
One proposed method for building hierarchies above the

input polygon level is volume clustering [28]. Faces of the
model are grouped into spatial cells, typically axis-aligned
boxes, and these cells are grouped into higher and higher
levels. This approach appears to work well for clustering
objects, such as the leaves of a tree. However, it does not
perform as well for clustering surface regions. A particular
region on a smooth surface will tend to have a dominant ori-
entation, which is not captured by enclosing the region in an
axis-aligned box. Since these volumetric hierarchies provide
poor approximations of the surface geometry, the radiosity
simulation is forced to descend very deep in the hierarchies
to achieve an acceptable solution, thus losing much of the
benefits that the hierarchy could provide. An object-aligned
box will produce a much tighter fit to the surface, and it
will have an orientation that reflects the orientation of the
surface. The iterative face clustering algorithm that we have
presented provides a convenient way to construct a hierarchy
of exactly this sort of tight-fitting box.

5 RESULTS

Figure 6 illustrates the performance of our clustering algo-
rithm on surface models of various sizes. All performance
measurements for the clustering algorithm were made on a
450 MHz Intel Pentium III system, and the algorithm was
run with the shape bias enabled (α2 = 1). The running time
of the system has been decomposed into three parts. First is
initialization, where the dual graph and initial quadrics are
constructed. Second is clustering, where the system greed-
ily contracts dual edges until each connected component has
been merged into a single cluster. Finally there is bounding
box construction, where each leaf in the tree propagates its
vertices up to the root to compute bounding boxes for every
node.
Given an input surface with n faces, both the initialization

and clustering phases of the algorithm will take O(n log n)
time. This is because each of them performs O(n) heap op-
erations, which themselves have O(log n) complexity. The
bounding box computation phase will also have O(n log n)
running time, if the resulting hierarchy is balanced. If it is
not, this final phase may take O(n2) time. The algorithm we



20000 40000 60000 80000 100000 120000

Input Polygons

500

1000

1500

2000
So

lu
tio

n 
T

im
e 

(s
)

Progressive
Vol. Clustering
Face Clustering

Figure 7: Running time of radiosity algorithms on the mu-
seum scene. Running time for face cluster radiosity is rela-
tively independent of scene complexity.

have given does not attempt to produce balanced hierarchies,
and the potentially greater cost of bounding box construc-
tion would seem to be apparent in the empirical data shown
in Figure 6. Also note that this analysis relies on the fact
that there are O(n) dual edges, which is a consequence of
our assumption that the input surface is a manifold (possi-
bly with boundary), and that the degree of every node must
be bounded by a constant.

Our preliminary performance analysis indicates that the
Jacobi iteration procedure [26] for computing the eigenvec-
tors of the covariance matrices can account for up to one
half of the total running time. This suggests that efficiency
could be increased quite a bit by applying PCA only at the
upper levels of the hierarchy and using a cheaper method to
compute approximating planes at the lower levels.

Figure 8 shows the result of clustering on a simple
paraboloid surface with 1896 triangles. Shown with each
face cluster partition are the corresponding fit planes de-
rived by minimizing the planarity term Efit. The extent of
each plane is limited by the bounding box fit during the
final phase of clustering. Note that the planes do fit the
surface fairly well, but that they seem tilted somewhat in
partition (b). When the cluster is fairly flat and extends
roughly equally in all directions in the plane, PCA does not
always orient the local frame in a way which would minimize
the bounding box size. A much more complex surface, con-
taining about 376,000 triangles, is shown in Figure 10. Note
how the size and shape of the clusters conform to the shape
of the surface: broad in smooth areas; small and narrow
in highly curved areas. However, when few clusters remain
(e) the algorithm is forced to choose between either irregu-
lar planar clusters or regular non-planar clusters. Since we
favor planarity over regularity, large irregular regions may
develop.

To demonstrate the significant advantages of face cluster-
ing for radiosity, we briefly summarize the performance of
our system [30]. Figure 7 illustrates the comparative run-
ning times for the simulation phase of three different radios-
ity algorithms running on a 195 MHz R10000 SGI machine
with 1 GB of main memory. The performance of the al-
gorithms is shown as a function of input scene complexity,
which was controlled by using surface approximations gener-
ated using the QSlim simplification package [10]. Progressive
radiosity, which uses all of the input polygons during the so-

lution process, requires rapidly increasing amounts of time
and memory as the input complexity increases. Hierarchi-
cal radiosity with volume clustering requires substantially
less resources, but its requirements also grow fairly rapidly
with complexity. This is largely due to the fact that volume
clusters do not provide an accurate fit for surface regions.
Consequently, the solution computed at high levels in the
hierarchy is quite inaccurate, and the algorithm is forced to
descend far down in the tree to achieve an acceptable solu-
tion. In fact, it must typically descend all the way to the
level of the input polygons. In contrast, the algorithm based
on face cluster hierarchies exhibits essentially unchanging
running times once the input complexity has risen to the
level of 30,000 polygons. The algorithm is able to find a
level in the hierarchy, far above the level of the input tri-
angles, at which an acceptable solution can be computed.
Because it never needs to descend deeper into the hierarchy,
it requires much less time and far less resident data than the
other algorithms.

6 CONCLUSION

We have described an efficient clustering algorithm which
partitions a given surface into a hierarchy of disjoint face
clusters. The resulting clusters are chosen so that they may
be reasonably approximated with planar elements. To pro-
vide an efficient means of assessing the planarity of clusters
during clustering, we have introduced a dual quadric error
metric. The face cluster hierarchies produced by our algo-
rithm can be used in a number of applications. Collision
detection, ray tracing, and shape analysis for simplification
appear particularly promising. We have previously demon-
strated the use of these face cluster hierarchies to perform
some of the largest, fastest radiosity simulations to date [30].
There are a number of promising directions in which this

work could be extended. We suspect that the efficiency
of the basic algorithm we have presented here may be im-
proved by selectively using cheaper methods to compute fit-
ting planes rather than always using PCA. Our choice of
a planarity criterion was motivated by the application to
radiosity, but other alternative error metrics could also be
considered. A more flexible combination of the planarity
and bias terms would be useful, particularly if it provided
finer control over the tradeoff between them. Because cer-
tain applications might benefit from balanced hierarchies, it
might also be useful to consider modifying the algorithm to
provide them, either by parallel merging of a maximal inde-
pendent set of dual edges [31] or by adding a balance bias
to the error metric [15].
Further information, including our experimental imple-

mentation, can be found online at http://graphics.cs.uiuc.
edu/∼garland/research/cluster.html.

7 ACKNOWLEDGEMENTS

This research was funded in part by the National Science
Foundation (grants CCR-9505472, CCR-9619853, and DMI-
9813259). We would like to thank Joel Welling for arranging
access to the large SGI server and Tom Stahovich for helping
to fund this work.

References

[1] Michael R. Anderberg. Cluster Analysis for Applica-
tions. Academic Press, New York, 1973.



[2] James Arvo and David Kirk. A survey of ray tracing
acceleration techniques. In Andrew Glassner, editor, An
Introduction to Ray Tracing, pages 201–262. Academic
Press, 1989.

[3] Dana H. Ballard. Strip trees: A hierarchical repre-
sentation for curves. Communications of the ACM,
24(5):310–321, 1981.

[4] Gill Barequet, Bernard Chazelle, Leonidas J. Guibas,
Joseph S. B. Mitchell, and Ayellet Tal. BOXTREE: A
hierarchical representation for surfaces in 3D. Computer
Graphics Forum, 15(3):387–96, 484, 1996.

[5] Jens Berkmann and Terry Caelli. Computation of sur-
face geometry and segmentation using covariance tech-
niques. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 16(11):1114–1116, 1994.

[6] Hervé Delingette. Simplex meshes: A general repre-
sentation for 3D shape reconstruction. In Conf. on
Computer Vision and Pattern Recognition (CVPR ’94),
June 1994.

[7] Tony DeRose, Michael Kass, and Tien Truong. Subdi-
vision surfaces in character animation. In Proceedings
SIGGRAPH 98, pages 85–94, 1998.

[8] O. D. Faugeras and M. Hebert. The representation,
recognition, and positioning of 3-D shapes from range
data. In Takeo Kanade, editor, Three-Dimensional Ma-
chine Vision, pages 301–353. Kluwer Academic Pub-
lishers, 1987.

[9] Michael Garland. Multiresolution modeling: Survey &
future opportunities. In State of the Art Report, pages
111–131. Eurographics, September 1999. http://www.
uiuc.edu/∼garland/papers.html.

[10] Michael Garland. Quadric-Based Polygonal Surface
Simplification. PhD thesis, Carnegie Mellon Univer-
sity, CS Dept., 1999. Tech. Rept. CMU-CS-99-105.
http://www.uiuc.edu/∼garland/research/thesis.html.

[11] Michael Garland and Paul S. Heckbert. Surface simpli-
fication using quadric error metrics. In SIGGRAPH 97
Proc., pages 209–216, August 1997. http://www.uiuc.
edu/∼garland/research/quadrics.html.

[12] S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree:
A hierarchical structure for rapid interference detection.
In Proceedings SIGGRAPH 96, pages 171–180, 1996.

[13] Pat Hanrahan, David Salzman, and Larry Aupperle.
A rapid hierarchical radiosity algorithm. Computer
Graphics (SIGGRAPH ’91 Proc.), 25(4):197–206, July
1991.

[14] Hugues Hoppe. Progressive meshes. In SIGGRAPH
’96 Proc., pages 99–108, August 1996. http://research.
microsoft.com/∼hoppe/.

[15] Hugues Hoppe. View-dependent refinement of progres-
sive meshes. In SIGGRAPH 97 Proc., pages 189–198,
August 1997. http://research.microsoft.com/∼hoppe/.

[16] Hugues Hoppe, Tony DeRose, Tom Duchamp, John Mc-
Donald, and Werner Stuetzle. Surface reconstruction
from unorganized points. In Computer Graphics (SIG-
GRAPH ’92 Proceedings), volume 26, pages 71–78, July
1992. http://research.microsoft.com/∼hoppe/.

[17] Anil K. Jain. Fundamentals of Digital Image Process-
ing. Prentice-Hall International, London, 1989.

[18] I. T. Jolliffe. Principal Component Analysis. Springer-
Verlag, New York, 1986.

[19] Alan D. Kalvin and Russell H. Taylor. Super-
faces: Polygonal mesh simplification with bounded er-
ror. IEEE Computer Graphics and Appl., 16(3), May
1996. http://www.computer.org/pubs/cg&a/articles/
g30064.pdf.

[20] Leif Kobbelt, Swen Campagna, Jens Vorsatz, and Hans-
Peter Seidel. Interactive multi-resolution modeling on
arbitrary meshes. In Proc. SIGGRAPH 98, pages 105–
114, 1998.

[21] Aaron W. F. Lee, Wim Sweldens, Peter Schröder,
Lawrence Cowsar, and David Dobkin. MAPS: Mul-
tiresolution adaptive parameterization of surfaces. In
Proc. SIGGRAPH 98, pages 95–104, 1998.

[22] Ping Liang and John S. Todhunter. Representation and
recognition of surface shapes in range images: A differ-
ential geometry approach. Computer Vision, Graphics,
and Image Processing, 52:78–109, 1990.

[23] David Luebke and Carl Erikson. View-dependent sim-
plification of arbitrary polygonal environments. In SIG-
GRAPH 97 Proc., pages 199–208, August 1997.

[24] Richard G. Niemi, Bernard Grofman, Carl Carlucci,
and Thomas Hofeller. Measuring compactness and the
role of a compactness standard in a test for partisan and
racial gerrymandering. Journal of Politics, 52(4):1155–
1181, 1990.

[25] Franco P. Preparata and Michael I. Shamos. Compu-
tational Geometry: an Introduction. Springer-Verlag,
New York, NY, 1985.

[26] William H. Press, Saul A. Teukolsky, William T. Vet-
terling, and Brian P. Flannery. Numerical Recipes in C:
The Art of Scientific Computing. Cambridge University
Press, Second edition, 1992. http://www.nr.com.

[27] Hanan Samet. Applications of Spatial Data Structures.
Addison-Wesley, Reading, MA, 1990.

[28] Brian Smits, James Arvo, and Donald Greenberg. A
clustering algorithm for radiosity in complex environ-
ments. In Proceedings of SIGGRAPH ’94, pages 435–
442, July 1994.

[29] Dieter Willersinn and Walter G. Kropatsch. Dual graph
contraction for irregular pyramids. In Proc. 12th IAPR
Intl. Conf. on Pattern Recognition, volume III, pages
251–256, October 1994.

[30] Andrew J. Willmott, Paul S. Heckbert, and Michael
Garland. Face cluster radiosity. In Eurographics Work-
shop on Rendering, June 1999. http://www.cs.cmu.edu/
∼ajw/paper/fcr-eg99/.

[31] Julie C. Xia and Amitabh Varshney. Dynamic view-
dependent simplification for polygonal models. In Pro-
ceedings of Visualization ’96, pages 327–334, October
1996.



(a) 250 clusters (b) fit planes (c) 50 clusters (d) fit planes (e) 12 clusters (f) fit planes

Figure 8: Face clusters & associated fit planes on a paraboloid. Corresponding clusters and planes are drawn in same color.

Figure 9: Face cluster radiosity solution, computed in only 3 minutes, for a scene with 2.7 million input polygons.

(a) 10,000 clusters (b) 5000 clusters (c) 2500 clusters (d) 1000 clusters (e) 100 clusters

Figure 10: Face clusters computed for Isis statue, composed of 375,736 triangles. Cluster shape adapts to surface shape.


