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Figure 1: We quadrangulate a given triangle mesh by extracting the Morse-Smale complex of a selected eigenvector of the mesh Laplacian
matrix. After optimizing the geometry of the base complex, we can generate a semi-regular remeshing of the bunny.

Abstract

Resampling raw surface meshes is one of the most fundamental
operations used by nearly all digital geometry processing systems.
The vast majority of work in the past has focused on triangular
remeshing; the equally important problem of resampling surfaces
with quadrilaterals has remained largely unaddressed. Despite the
relative lack of attention, the need for quality quadrangular resam-
pling methods is of central importance in a number of important ar-
eas of graphics. Quadrilaterals are the preferred primitive in many
cases, such as Catmull-Clark subdivision surfaces, fluid dynamics,
and texture atlasing.

We propose a fundamentally new approach to the problem of quad-
rangulating manifold polygon meshes. By applying a Morse-
theoretic analysis to the eigenvectors of the mesh Laplacian, we
have developed an algorithm that can correctly quadrangulate any
manifold, no matter its genus. Because of the properties of the
Laplacian operator, the resulting quadrangular patches are well-
shaped and arise directly from intrinsic properties of the surface,
rather than from arbitrary heuristics. We demonstrate that this quad-
rangulation of the surface provides a base complex that is well-
suited to semi-regular remeshing of the initial surface into a fully
conforming mesh composed exclusively of quadrilaterals.

Keywords: quadrangular remeshing, spectral mesh decomposi-
tion, Laplacian eigenvectors, Morse theory, Morse-Smale complex

1 Introduction

Polygon meshes, especially those arising from scanning systems
and isosurface extraction, frequently exhibit a number of deficien-

cies. They are often sampled at inappropriate resolutions and typ-
ically contain many poorly shaped elements. Because of the con-
stant occurrence of poor meshes, the ability to partition surfaces
into well-shaped regions and to resample surfaces with well-formed
meshes is of critical importance in almost all mesh processing sys-
tems.

The vast majority of prior work on remeshing methods in the graph-
ics literature has focused on the problem of producing triangle
meshes. However, the ability to produce high-quality quadrilateral
meshes is often just as important. Quadrilaterals are the preferred
choice of primitive for many man-made objects, such as buildings,
and for most character models. Quadrilaterals are also the pre-
ferred primitive in several simulation domains, including computa-
tional fluid dynamics. Many subdivision surface formulations, no-
tably Catmull-Clark surfaces, and spline patch primitives, such as
NURBS, require quadrangular base complexes. Furthermore, de-
composing a surface into well-shaped quadrangles provides a natu-
ral means of building texture atlases. Nevertheless, only recently
have methods been developed for automatically quadrangulating
complex surfaces. Those few methods which do exist are frequently
quite complex, delicate to implement, and rely on a carefully tuned
balance of multiple heuristic components. And several recently
proposed methods produce only quad-dominant—rather than pure
quadrilateral—meshes, making them ill-suited for use in creating
Catmull-Clark base domains.

In this paper, we present a fundamentally new approach for building
quadrangular base complexes over triangulated manifolds of arbi-
trary genus. In contrast to heuristic clustering-based approaches,
our quadrangulation arises out of the intrinsic properties of the ini-
tial surface shape. We use this quadrangulation of the surface as the
basis for a semi-regular remeshing system that produces fully con-
forming meshes composed exclusively of quadrilaterals and with a
generally small number of extraordinary points. We also demon-
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strate that our quadrangular complexes produce high quality results
when used to define Catmull-Clark subdivision surfaces.

To decompose a surface into quadrangular patches, we introduce a
new Morse-theoretic analysis of the spectrum of the target mesh.
We use the eigenvectors of a discrete Laplacian matrix to define
scalar fields over a surface mesh such that the extrema of a given
field occur at a desired “frequency.” Extracting the Morse-Smale
complex of these scalar fields provides us with a decomposition of
the surface that is guaranteed to be quadrangular on even the most
topologically complex surfaces.

2 Related Work

A given mesh represents an inherently fixed sampling of some un-
derlying shape, decomposing it into a fixed collection of polygons.
Clearly, this fixed sampling will not in general provide adesirable
sampling for all applications. Consequently, repartitioning and/or
resampling an existing mesh is one of the most fundamental tools
necessary in any mesh processing system. This touches on a num-
ber of closely interrelated problems, all of which have been exten-
sively studied. We review only the most relevant results here.

2.1 Parameterization & Partitioning

Given a surface patch homeomorphic to a disk, there are many
methods available for automatically constructing a mapping of that
patch into the plane [Floater and Hormann 2004]. Once such a
mapping is established, the patch may be trivially resampled on a
regular parametric grid. This is the fundamental approach under-
lying the construction of geometry images [Gu et al. 2002; Sander
et al. 2003]. Assuming that the parametric distortion is sufficiently
low, this approach can produce a reasonable resampling of the sur-
face.

Manifolds of other topological type must in general be partitioned
into patches homeomorphic to a disk prior to being parameterized.
Decomposing the mesh into patches can also be used to dramat-
ically reduce the overall level of parametric distortion. Common
approaches to the problem of surface partitioning include iterative
merging [Garland et al. 2001], minimum graph cuts [Katz and Tal
2003], and generalized Lloyd relaxation [Sander et al. 2003].

2.2 Remeshing

Surface meshes produced by automatic reconstruction systems are
often ill-suited for subsequent processing steps. Their sampling
density is frequently insensitive to the underlying shape, and they
often tend to exhibit undesirable artifacts such as high valence ver-
tices, very small or very large angles, poor edge length distributions,
etc. Consequently, many remeshing methods have been developed
to correct these various deficiencies.

Mesh Simplification. Meshes constructed from point cloud
data, range scans, and isosurface extraction are almost invariably
over-tessellated. The target shape can almost always be represented
very well using far fewer polygons. Many surface simplification
methods have been developed to derive such simpler approxima-
tions automatically [Garland 1999]. The majority of simplification
algorithms operate by greedily applying a decimation primitive,
such as edge contraction [Hoppe 1996; Garland and Heckbert 1997]
or vertex removal [Schroeder et al. 1992]. A more general approach

is to iteratively apply operations such as edge contraction and flip-
ping within a global optimization search [Hoppe et al. 1993]. These
methods focus primarily on adapting the mesh connectivity; retil-
ing methods, in contrast, explicitly resample vertex sites and sub-
sequently tessellate the chosen vertices [Turk 1992]. A similar em-
phasis on directly resampling the surface can be seen in methods
that construct a global decomposition of the surface into patches,
which are then polygonized to produce a final mesh [Kalvin and
Taylor 1996; Cohen-Steiner et al. 2004].

Semi-regular Remeshing. The overriding concern of simplifi-
cation methods is to reduce mesh complexity while maintaining ge-
ometric fidelity; quality measures such as vertex degree and mesh
regularity are generally ignored. For a host of multiresolution mesh
analysis methods the paramount concern is instead that the mesh
have the greatest possible regularity (e.g., triangle meshes with de-
gree 6 vertices). Such regular mesh structure is important, in part,
because it can be derived by recursive mesh subdivision operations.

Semi-regular remeshing schemes approach this problem as a two
step processs. First, they decompose the surface into a set of trian-
gular or quadrangular patches. Second, they resample each patch
by recursive subdivision. Ecket al. [1995] used the dual of a quasi-
Voronoi decomposition to create a set of triangular base patches. In
a similar vein, the MAPS system [Lee et al. 1998] builds a triangu-
lar base domain via simplification. Both are designed for use as the
initial stage in a pipleline for wavelet or subdivision analysis of sur-
faces. More recently, this fundamental approach has been extended
by the normal meshes construction [Guskov et al. 2000; Friedel
et al. 2004], which focuses primarily on the encoding efficiency of
the multiresolution hierarchy, and globally smooth parameteriza-
tion [Khodakovsky et al. 2003], which produces a higher degree of
parametric smoothness across triangular patch boundaries.

In contrast to the triangular case, comparatively little work has
been done on the problem of constructing semi-regular quadrilat-
eral meshes. The most common approach that others have taken
is to construct a non-quadrangular decomposition, from which a
quadrangulation can be derived. Eck and Hoppe [1996] begin by
constructing a triangular base complex. They then solve a maxi-
mum matching problem over the dual graph of this complex, join-
ing all paired triangles into quadrangles. Similarly, Boier-Martinet
al. [2004] produce an arbitrary clustering of the surface into con-
nected face sets, whose boundaries may be polygons of any type,
and then quadrangulate these polygons.

Isotropic Remeshing. Applications that are unconcerned with
multiresolution analysis may desire well-sampled meshes without
the need for the regularity constraints imposed by semi-regular
remeshing schemes. Isotropic remeshing methods meet this need
by producing triangular meshes which consist of (roughly) equilat-
eral elements and whose vertices obey a specified density function.

Alliez et al. [2002] proposed one natural solution to this problem:
compute a conformal parameterization of the surface, distribute ver-
tices in the parameter domain suitably, and compute their Delaunay
triangulation. In a follow-on to this work [Alliez et al. 2003b] they
demonstrate that weighted centroidal Voronoi diagrams, which they
construct via Lloyd relaxation, provide a powerful means of gen-
erating a good vertex distribution. Surazhsky and Gotsman [2003]
developed an alternative approach that uses only local mesh updates
and therefore requires no global parameterization. Their approach
can also be used to adapt the weighted centroidal Voronoi diagrams
of Alliez et al. [Alliez et al. 2003b] to work efficiently on much
larger meshes [Surazhsky et al. 2003].
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Anisotropic Remeshing. In certain cases, meshes whose ele-
ment aspect ratios conform to an appropriate tensor field can be
more desirable than purely isotropic meshes. For example, meshes
which sample a shape optimally will have elements which stretch
out in directions of low curvature and are compressed in directions
of high curvature. Similarly, certain fluid flow simulations are most
robust when elements conform to the expected flow directions.

This anisotropy arises most naturally in the context of generating
quadrangular meshes since quadrilaterals, as opposed to triangles,
tend to have an obviously preferred orientation. Several methods
have been proposed very recently for generating anisotropic quad-
dominant (i.e., primarily, but not exclusively, composed of quadri-
laterals) meshes. Alliezet al.[2003a] numerically compute integral
lines of the two principal direction fields of the surface in a confor-
mal parametric domain. The spacing of these lines is controlled
by the local surface curvature, and vertices are created where two
orthogonal lines intersect. The stability of this method hinges on
carefully smoothing the curvature tensor field from which the prin-
cipal directions are derived. Marinov and Kobbelt [2004] demon-
strate how this approach can be made to work without the need for a
parameterization of the surface. Donget al. [2005] similarly adopt
the idea of tracing orthogonal families of curves, but they define
these curves using a harmonic scalar field defined over the surface.

Mesh Generation. There is an extensive literature on the gener-
ation of meshes for use in numerical simulation frameworks such as
the finite element method [Bern and Eppstein 1995; Owen 1998].
Such methods tend to emphasize bounds on minimum/maximum
angles and edge lengths, as these quantities are usually tied to the
convergence rate of their numerical methods. Within the mesh gen-
eration community, a number of techniques have been developed
for generating quadrilateral or quad-dominant meshes over planar
domains. The most common techniques in widespread use are ad-
vancing front methods, such as paving [White and Kinney 1997],
and methods which transform triangulations into quad meshes [Shi-
mada et al. 1998; Owen et al. 1999].

2.3 Surface Analysis

Spectral Graph Theory. The eigenvalues/eigenvectors of the
discrete Laplacian matrix provide a natural formulation of thespec-
trumof a graph, and hence a mesh. They generalize the discrete co-
sine transform in the plane and spherical harmonics on the sphere.
The study of this eigenspace—known as spectral graph theory—is
a well-developed branch of mathematics and has produced many
fascinating results [Chung 1997].

As the spectral decomposition of a mesh exposes a great deal of
its structure, it has been successfully applied in many diverse ways.
It defines a natural frequency domain over the mesh, and hence
provides an attractive formalism for surface smoothing and mesh
signal processing [Taubin 2000]. Retaining and quantizing only the
most important frequency bands provides a very effective means
for compressing the surface geometry [Karni and Gotsman 2000].
The eigenvector corresponding to the first non-zero eigenvalue—
the Fiedler vector—has been used with great success for graph bi-
section [Hendrickson and Leland 1995]. Similarly, it can be used
to provide a high-locality ordering for mesh data [Isenburg and
Lindstrom 2004] or, more generally, to solve the “seriation” prob-
lem [Atkins et al. 1999]. The Fiedler vector, together with the sub-
sequent eigenvector, can be used to automatically embed graphs
into the plane in an aesthetically pleasing manner [Koren et al.
2002].

Morse Theory. Elements of Morse theory date back to the 19th
century [Cayley 1859; Maxwell 1870] but developed more thor-
oughly later, first for continuous functions on smooth manifolds
[Morse 1925; Milnor 1963], and more recently (and more usefully)
for meshes [Banchoff 1967; Edelsbrunner et al. 2003]. In computer
graphics, Morse theory and its related topological data structures
have been applied to implicit surfaces [Stander and Hart 1997], vol-
umetric isosurfaces [van Kreveld et al. 1997; Pascucci and Cole-
McLaughlin 2002; Weber et al. 2002], surface meshes [Ni et al.
2004] and shape database searches [Hilaga et al. 2001].

We use the Morse-Smale complex as an initial quadrangulation of
a meshed surface, using as a Morse function one of the Laplacian
eigenvectors. Our construction of the Morse-Smale complex is the
same as has been used previously [Bremer et al. 2004]. Our con-
tribution is instead the application of Morse analysis to a shape
harmonic which appears to be unique at least within the graphics
community.

3 Theoretical Background

We assume that we are given an initial triangulated manifold mesh
M = (V,F) with vertex setV and triangle setF . The manifoldM
may be of any genus, but to simplify our presentation, we shall
assume thatM has a single connected component.

Our approach to quadrangulating this input manifold is grounded
in a Morse-theoretic analysis of the Laplacian spectrum of piece-
wise linear manifolds. In this section, we review the theoretical
underpinnings of our method. We will present the details of our
quadrangulation algorithm in Section 4.

3.1 Morse Theory on 2-Manifolds

Let us suppose for the moment thatM is a continuous 2-manifold
embedded inR3. SinceM is a manifold, there exists a localu,
v parameterization in a neighborhood of each pointp ∈ M. Let
f : M → R be a twice differentiable scalar function. A pointc∈M
is calledcritical if fu(c) = fv(c) = 0, with critical value f(c). The
critical point c is degenerateif fuu(c) fvv(c)− 2 fuv(c) = 0, other-
wise it isMorse. The functionf is Morseif all its critical points are
Morse.1.

Let λ1≤ λ2 be the two eigenvalues2 of the Hessian off , with corre-
sponding eigenvectors(e1,e2). The number of negative eigenvalues
classifies a Morse critical point as aminimum(zero),saddle(one)
or maximum(two).

Every regular (non-critical) pointp ∈ M has a well defined gra-
dient ∇ f (p) = ( fu(p), fv(p)). From p we can integrate this gra-
dient in both directions tracing out anintegral line γ : R → M as
the maximal solution of the ODEγs(s) = ∇ f (γ(s)) with initial
value γ(0) = p. The origin orgγ = lims→−∞ γ(s) anddestination
destγ = lims→∞ γ(s) of an (open) integral lineγ are distinct critical
points and neither is included inγ. Two integral lines are either dis-
joint or identical and the set of integral lines coversM except for
the critical points. The manifoldM is thus the disjoint union of the
integral lines and the critical points off .

1Strictly speaking, the Morse distinction has classically required the
function to have unique critical values which simplifies the topological
surgery when processing their corresponding topological events in value or-
der, but is otherwise not necessary. Morse critical points are nevertheless
necessarily isolated [Milnor 1963].

2(λ1,λ2) = 1
2( fuu+ fvv±

√
4 f 2

uv+( fuu− fvv)2).
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A 2-manifold Morse functionf is Morse-Smaleif no integral line
both starts and ends at a saddle. Almost all Morse functions are
Morse-Smale but the classical example of altitude on a vertically
oriented torus isnot, since some of its integral lines originate and
terminate at saddles. Each integral line of a Morse-Smale function
is either anascending separatrixif its origin is a saddle and desti-
nation is a maximum, adescending separatrixif its destination is a
saddle and origin is a minimum, orsimpleif its origin is a minimum
and destination is a maximum.

A Morse-Smale functionf provides a cellular decomposition ofM
into aMorse-Smale complexwhose 0-cells are the critical points of
f , 1-cells connecting critical points are the four separatrices start-
ing and ending each saddle, and 2-cells are the remaining disjoint
regions ofM. Each region is a quadrilateral whose boundary is a
saddle ascending to a maximum, descending to a saddle, descend-
ing to a minimum and ascending to the original saddle. It is gener-
ically possible that the two saddles are identical, causing the two
ascending or descending sides of the quadrilateral to merge.

The Morse-Smale complex can also be defined for 2-manifold trian-
gle meshes, by extending Morse theory to the piecewise linear func-
tion resulting from the linear interpolation of pre-assigned unique
vertex values across the edges and faces of the mesh. An arbitrary
but consistent ordering (such as the vertex index or a hash of posi-
tion) can be used to perturb non-unique vertex values [Edelsbrunner
and Mücke 1990]. Critical points are then classified based on their
local neighborhood [Banchoff 1967; Edelsbrunner et al. 2003]. If
all edge-connected neighbors of a pointc have a lower function
value,c is called a maximum; if all are above, a minimum; and if
the function changes between above and below four timesc is clas-
sified as a (simple) saddle, see Figure 2. In general, there can exist
saddles with an arbitrary number of switches, which are split into a
collection of simple saddles.

c

minimum saddle maximumregular point

c c

splitting of two−fold saddle

c c c

Figure 2: Classification of a vertexc based on relative height of its
neighbors. Light vertices/edges mark higher-value neighbors and
solid vertices/edges lower-value neighbors.

For the analysis of piece-wise linear functions integral lines are re-
placed by lines of steepest ascent or descent. Note that, unlike in-
tegral lines steepest lines are not uniquely defined and not neces-
sarily disjunct. However, Edelsbrunneret al. [2003] showed that
there always exists a set of steepest lines which can be simulated
as pair-wise disjunct and which, using the definitions of the smooth
case, define a non-degenerate Morse-Smale complex. Section 4.2
describes the implementation of this algorithm further, summariz-
ing Bremeret al. [2004].

3.2 Spectral Analysis of Meshes

It is well-known that the discrete Laplacian operator on piecewise
linear functions over triangulated manifolds is given by:

∆ fi = ∑
j∈Ni

wi j ( f j − fi), (1)

whereNi is the set of vertices adjacent to vertexi and wi j is a
scalar weight assigned to the directed edge(i, j). For graphs free of

any geometry embedding, it is customary to use the combinatorial
weightswi j = 1/deg(i) in defining this operator. However, for 2-
manifold surfaces the appropriate choice are the discrete harmonic
weights:

wi j =−1
2
(cotαi j +cotβi j ). (2)

Here αi j and βi j are the angles opposite the edge(i, j). De-
tails on the derivation of these weights can be found in several
sources [Pinkall and Polthier 1993; Duchamp et al. 1997; Desbrun
et al. 1999].

This formulation of the Laplacian is clearly a linear operator. If we
represent the functionf by the column vector of its values at all
verticesf = [ f1 f2 . . . fn]T, we can reformulate the Laplacian as a
matrix

∆f =−Lf , (3)

where the Laplacian matrixL has entries

Li j =


∑k wik if i = j,
−wi j if (i, j) is an edge ofM,
0 otherwise.

(4)

The eigenvaluesλ1 = 0≤ λ2 ≤ . . . ≤ λn of L form thespectrum
of the meshM and the corresponding eigenvectorse1,e2, . . . ,en of
L define piecewise linear functions overM of progressively higher
frequencies [Taubin 2000].

4 Building a Quadrangular Base Complex

Recall that our goal is to construct aquadrangulationof the input
meshM. We want this quadrangulation to be pure, in the sense that
it contains no non-quadrangular patches, and we want it to be well-
defined no matter the genus of the input. We would also like each
quadrangular patch to be well-shaped.

As outlined in Section 3.1, the Morse-Smale complex of a piece-
wise linear functionf : V →R provably establishes a quadrangula-
tion of even the most complex surfaces. Thequality of this quad-
rangulation, on the other hand, is intimately tied to the choice of
function f . Our key insight is that eigenvectors of the Laplacian
matrix L induce scalar fields on the surface that have exactly the
right properties necessary to achieve good complexes.

4.1 Laplacian Eigenfields

Any eigenvectore of L implicitly determines a functionf : V → R
over the mesh—the value off at vertexi is simply the correspond-
ing valueei in row i of the eigenvector. We refer to this functionf ,
defined by an eigenvector ofL , as aneigenfield.

It is well-known that the eigenfields of the Laplacian generalize
our usual notion of fixed-frequency functions. The eigenfields of a
regular planar grid correspond to the basis functions of the discrete
cosine transform, see Figure 3. Similarly, the eigenfields of the
sphere produce a discrete form of the spherical harmonics, and they
produce discrete toroidal harmonics on the torus. On more general
surfaces, the eigenfields continue to define a set of “harmonics” and
the corresponding eigenvalues identify their squared frequency.

For our goal of quadrangulation, these eigenfields have several cru-
cial properties. Of greatest importance is the fact that the extrema
of the function are distributed in a uniform way; without this prop-
erty the Morse-Smale complex would produce a very poor quad-
rangulation. The eigenfields occur in order of increasing frequency,
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Figure 3: The first 8 non-constant eigenfields over a 15×15 planar
grid, plotted as heightfields.

8 9 10 14 15

20 32 38 39 40

Figure 4: Selected torus eigenfields. Note the increasing complex-
ity and symmetries of higher harmonics.

making it fairly easy to select an eigenfield of a desired complexity.
This is also important from an efficiency standpoint, as it means we
only need to compute the firstk low frequency eigenfields of the
matrix. Because it is a fixed-frequency function, the eigenfield is
also generally free of superfluous extrema. This keeps the number
of extraordinary points low, as only extrema of the eigenfield can
be extraordinary points.

We compute eigenfields using the ARPACK sparse eigensystem
solver. It implements an iterative Arnoldi method that allows us
to efficiently compute only the firstk eigenvectors ofL . As we
are generally interested in fairly sparse quadrangulations of the sur-
face, we typically need to find only the first 40–60 eigenvectors of
L , regardless of the input mesh complexity.

4.2 Extracting the Morse-Smale Complex

Given a piecewise linear eigenfield defined over the vertices of the
mesh, constructing the Morse-Smale complex is straightforward.
Starting from each saddle, one computes four steepest lines—two
ascending and two descending ones. Thesepathsconnect the saddle
with its surrounding extrema. Two paths in the same direction (both
ascending or both descending) can merge; two paths with differ-
ent directions must remain separate. Once two paths have merged
they must never split. After all paths are computed the surface is
partitioned intocells each of which is incident to two saddles (or
the same saddle twice). These conditions are sufficient to guaran-
tee that the complex is in fact a non-degenerate Morse-Smale com-
plex [Bremer et al. 2004]. Note that this algorithm can be defined
in a nearly exclusively combinatorial manner, making it simple to
implement and stable even for the most degenerate functions.

Figure 4 shows a simple of building Morse-Smale complexes out
of successive harmonics (i.e., eigenfields) on a torus. Notice how
higher harmonics—corresponding to higher frequencies—produce
an increasing number of patches. Also notice the nearly-perfect
symmetry of the eigenfields and of the placement of their extrema.

5 Optimizing the Complex

In practice, the initial Morse-Smale complex as computed in Sec-
tion 4 is not entirely suitable as a quadrangulation of the surface.
The numerical eigenvector computation typically generates some
amount of noise in the eigenfield, leading to erroneous local ex-
trema. The paths connecting extrema may also be less than satis-
factory. They are traced by simple gradient ascent/descent through
the field. This has many advantages in terms of correctness and ro-
bustness of the topological construction, but it can produce paths
that do not follow the surface shape in a natural way. This kind of
behavior is clearly evident in the complexes shown in Figure 4.

We address these deficiencies in the complex using a two phase op-
timization process. First, we optimize the topology of the complex
by removing extraneous critical points. Next, we optimize the ge-
ometry of the paths in the complex while keeping its connectivity
fixed.

5.1 Topology Optimization

Corresponding to spherical harmonics, one expects the eigenfield
to be smooth with an increasing number of critical points for in-
creasing eigenvalues. However, the uneven sampling and usually
irregular triangulations of the surfaces as well as the iterative eigen-
solver add noise to the field. Additionally, the combinatorial algo-
rithm used to compute the Morse-Smale complex can add “sym-
bolic” noise due to the arbitrary vertex ordering. Combined, these
effects add high frequency distortions which often appear in the
Morse-Smale complex as clusters or chains of superfluous critical
points, see Figure 5.

(a) (b)

Figure 5: Eigenfield of the three-fold torus. (a) The initial complex
showing a typical noise pattern; (b) simplified complex.

To remove the extraneous critical points we usecancellationsto
simplify the Morse-Smale complex [Edelsbrunner et al. 2003; Bre-
mer et al. 2004]. Each cancellation removes a connected saddle-
extremum pair, all paths incident to the saddle, and two cells, see
Figure 6(a). In general, each saddle can be part of four different
cancellations involving either minima or maxima. The only excep-
tion arestrangulations, see Figure 6(b), where a saddle can only be
canceled in the direction consisting of two unique extrema. As a
graph operation, cancellations can be seen as a slightly more com-
plicated version of an edge collapse. However, following Morse
theory, one can also relate cancellations to the corresponding func-
tion. First, one defines that for a given saddle and direction (min-
ima/maxima) always the higher minimum or lower maximum must
be cancelled. This reduces the number of potential cancellations
of a saddle to (at most) two. Second, one ranks cancellations by
their persistence[Edelsbrunner et al. 2002], defined as the abso-
lute difference in function value of the cancelled pair. A Morse-
Smale complex is then simplified by canceling critical points in or-
der of increasing persistence. Conceptually, this algorithm simpli-
fies the Morse-Smale complex indirectly by dealing primarily with
the eigenfield itself. In fact, the use of persistence as error met-
ric combined with the greedy simplification approach simulates a
topological simplification of the eigenfield. Such an approach has
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(a) (b)

Figure 7: Eigenfield of the cow. (a) Initial complex showing some noise at the shoulder and leg; (b) Complex of (a) simplified with a
persistence of 0.3%; (c) The same complex at a persistence of 7% (top-left), 11% (top-right), 15% (bottom-left), and 22% (bottom-right).

w v u

u w
w

w
v

minimum maximum saddle

(a) (b)

Figure 6: Morse-Smale complex before and after cancelingu, v.
One saddle and one extremum (maximum) are removed, along with
four paths and two (a) or one cells (b). (a) Regular situation allow-
ing v to be cancelled with minima as well as maxima. (b) Strangu-
lation allowing only the cancelation of maxima.

already been proven very effective in removing noise from scien-
tific data [Bremer et al. 2004].

Our experiments show that except for noise the Morse-Smale com-
plexes of certain eigenfields are well suited as base domains. Since
the persistence-based simplification removes this noise in a topo-
logically optimal way it is not surprising that simplifying the
Morse-Smale complex in this manner performs well. An example
is shown in Figure 7 using an eigenfield of the cow mesh. The ini-
tial complex already builds an acceptable base complex with critical
points at all major geometric features and varying cell size depend-
ing on geometric complexity. However, there does exist some noise
which would distort an immediate re-meshing. For example, on the
right front leg as well as on the side of the left shoulder one can see
superfluous critical point pairs (also evident by their asymmetry).
With traditional simplification methods these are difficult to remove
as for example their geometric distance does not differ much from
those on the ears. We have experimented with path-length as well as
aspect ratio based simplification schemes but found that these often
remove features rather than noise. Figure 7(b) shows the simplified
Morse-Smale complex of the cow after canceling all pairs below
a persistence of 0.3% (relative to the overall range of the func-
tion). Note, that the complex is nearly perfectly symmetrical and
transitions naturally between areas of different geometric complex-
ity. Finally, Figure 7(c) shows the same complex more aggressively
simplified which produces level-of-detail type complexes. First, the
horns are removed (top-left), then the ears (top-right), followed by
the front feet (bottom-left), and finally the front legs (bottom-right).

The last step in performing an automatic optimization of an initial
complex is to choose an appropriate simplification threshold. As

Figure 8: Base complex on the 3-torus before (left) and after (right)
path straightening.

the values used in Figure 7 suggest, the amount of noise we have
encountered in terms of persistence is minimal. Furthermore, the
existing noise is well separated from the “signal” by sometimes sev-
eral orders of magnitude difference in persistence. Table 1 shows
the number of cancellations performed during the clean-up, the
noise threshold used, and the smallest persistence of any remaining
critical point pair for several data sets. The persistences are mea-
sured relative to the maximal function range of the corresponding
field.

bunny rocker arm cat moai foot
# of cancel. 0 3 5 10 3
thresh. pers. 0% 0.2% 0.6% 0.2% 0.1%
rem. pers. 0.8% 2.3% 6.5% 1.8% 2.8%

Table 1: Number of cancellations performed during clean-up, noise
threshold, and smallest remaining persistence.

5.2 Geometry Optimization

The persistence-based simplification that we have just outlined re-
liably removes what is essentially high-frequency noise in the com-
plex. An additional low-frequency type of noise can be observed
once we examine the geometric structure of the complex. In certain
rare cases, the complex will contain two nearby saddles that are
both connected to far away extrema, as measured by geodesic dis-
tance along the surface. This has the effect of producing extremely
long and thin diamond shapes. We remove these sliver patches by
merging the two saddles in question into a single higher order sad-
dle. As with the persistence-based simplification, there is a wide
and easily detected separation between these undesirable saddles
and normal saddles.

Once the connectivity of the complex is fixed, we proceed to opti-
mize the geometry of its paths. During the initial complex construc-
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Figure 9: Remeshing the torus with progressively higher harmon-
ics. Note the near-perfect symmetry of the quadrangulations.

tion, the paths are extracted by following gradient ascent/descent
lines through the eigenfield. This can produce rather jagged paths,
especially when the input mesh is poorly tessellated. We would like
to replace each path with a “straightened” version.

We formulate the problem as one of tracing a straightest geodesic
path [Polthier and Schmies 1998] between adjacent nodes in the
complex, subject to the constraint that paths may never cross. Be-
cause of this constraint, we do not actually use a global algorithm
such as that proposed by Polthier and Schmies because guarantee-
ing the validity of the paths can become extremely difficult. Instead,
we opt to iteratively straighten a local section of a given path con-
tained within the 1-ring of a selected vertex. This restricted local
update allows us to easily guarantee that the paths of the complex
will never cross, which would result in an invalid complex. It is not
necessarily guaranteed to converge to the optimal geodesic curve,
but this is of far less importance than preserving the correctness of
the complex. An example of the straightening process is shown in
Figure 8.

6 Results

In this section, we investigate the results achieved in practice by
our quadrangulation technique. We illustrate the behavior of our
quadrangulations by using them as base complexes for semi-regular
remeshing of the input surface.

We intentionally adopt a very simple approach to producing a semi-
regular mesh from our quadrangular base complexes. The user
specifies a desired sampling rated. We then parameterize each
patch onto the unit square[0,1]×[0,1] using a simple linear method
that is guaranteed to be valid [Floater 2003]. Once a patch is param-
eterized, we construct a regulard×d grid of quadrilaterals in this
parametric domain, and map their corners back onto the surface to
produce our output mesh. By sampling at a fixed rate we trivially
guarantee that the final mesh is fully conforming. The quality of
meshes produced by this simple resampling scheme is completely
dependent on the quality of the base complex produced by our algo-
rithm. As we shall see, we are indeed able to produce good quality
meshes in this manner, thus demonstrating the quality of our under-
lying quadrangulation. By using this regular sampling scheme, we
also guarantee that extraordinary points can only occur at extrema
of the eigenfield.

For our first example, shown in Figure 9, we look at our results on a
torus. This is a simple surface whose eigenfields, as we have men-

Figure 10: We optimize the raw Morse-Smale complex (left), pro-
ducing a straightened complex (middle) from which we extract a
semi-regular quad mesh (right).

Figure 11: The base complex, and hence the remesh, captures the
protrusions of this mesh quite well.

tioned earlier, are discretizations of continuous toroidal harmon-
ics. The spectrum of the torus is in fact highly structured, and the
eigenfields and complexes we extract exhibit near-perfect symme-
try. This regularity and symmetry are apparent in the remeshing
output as well. Note that while the torus can be tessellated with a
fully regular quad mesh, our method does not produce such meshes.
Rather, the number of extraordinary points is related to the har-
monic chosen to determine the base complex.

Figure 10 shows a quadrangulation of a scanned Moai statue. The
raw surface data (on which the complex is superimposed) is fairly
noisy and the mesh is moderately irregular. Nevertheless, the quad-
rangulation is quite stable and the straightened complex provides
a good decomposition of the surface. The remeshing result is
quite uniform and the individual elements are generally very well-
shaped.

Further remeshing results can be seen on the bunny in Figure 1,
the Santa ornament in Figure 11, and the rocker arm in Figure 12.
These surfaces all exhibit fairly complex geometry, which our quad-
rangulation is able to capture and preserve during resampling. Both
the bunny and the Santa ornament have significant features pro-
truding from the main body of the surface. If these are not cap-
tured well by the base complex, our regular remeshing procedure
would produce very high parametric distortions — and hence very
poor meshes — in these areas. However, we see that the surface is
covered at a fairly uniform rate, indicating that the base complex
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Figure 12: Remeshing a more complex genus-1 surface.

Figure 13: This foot is a smooth surface, and is sampled with a
fairly uniform mesh. Our method also correctly handles the tiny
topological hole in the toes.

has done a good job of identifying and capturing these features.
Similarly, the rocker arm contains a large topological handle which
can, with a poor base complex, degenerate terribly when remeshed.
Again, we see that our base complex and the derived remeshing
result samples this feature quite well.

Next let us consider the foot shown in Figure 13. This surface
clearly ought to be of genus 0. However, as the result of reconstruc-
tion errors, it is actually genus 1. There is a very small topological
handle between the first two toes. This kind of topological “noise”
can be difficult to detect, and many methods do not handle it well.
In contrast, our quadrangulation approach is based on a theoreti-
cally robust procedure for extracting the topology of the surface.
It correctly handles this tiny topological feature by threading the
quadrangulation through the hole.

A currently popular scheme for remeshing surfaces with quadri-
laterals is based on tracing two families of mutually orthogonal
integral lines over the surface [Alliez et al. 2003a; Marinov and
Kobbelt 2004; Dong et al. 2005]. The intersections of these lines
are used to determine vertex placement, and the spacing between
lines is controlled by locally starting/stopping flow lines. We illus-
trate the results of one such system, implementing a method like
the one described by Donget al. [2005], in Figure 14. On the left
is a mesh that tries to maintain a uniform edge length everywhere,
and on the right is a mesh that attempts to vary interline spacing
based on the local surface curvature. Compare these two meshes
with the result shown in Figure 1 produced by our system. All 3
meshes contain roughly 9800 vertices. First, tracing schemes pro-
duce quad-dominant rather than pure quad meshes. Because they
control mesh density by starting and terminating flow lines over

Figure 14: Quad meshes produced by line tracing algorithms pro-
duce much more irregular meshes, especially when trying to locally
adapt to surface curvature (at right).

Figure 15: The eigenfield complex detects both symmetries and
protrusions. However, the tail is distorted because the input mesh
has no vertex at the tip.

the surface, they also produce noticeably more irregularities in the
mesh. This effect is particularly pronounced when trying to adapt
the spacing to local surface curvature. As the curvature estimates
vary over the surface, flow lines are frequently stopped and started.
Each such decision produces an irregularity in the mesh. The cu-
mulative effect is a significantly irregular mesh. Similar effects can
be seen in the results reported by Alliezet al.[2003a], Marinov and
Kobbelt [2004], and Donget al. [2005]. In contrast, our meshes
generally have few extraordinary points.

Now let us consider the cat shown in Figure 15. It is clear that the
base complex does an excellent job of capturing the symmmetry of
the surface. It also does a very good job of capturing the protruding
limbs and ears — except the tail. As we can see, the remeshing
of the tail is rather distorted. This illustrates one limitation of our
approach. The Laplacian eigenfields reliably contain extrema at the
tips of protruding features. However, by construction extrema may
only occur at vertices of the input mesh. The original cat mesh has
no vertex at the tip of the tail, and thus our method is not able to
place a base complex vertex at the ideal location on the tip of the
tail. Instead, we can see it is forced to use a nearby vertex.

The remeshing results we have shown up to this point are rendered
as simple bilinear quadrilaterals. To get a clearer picture of the
geometric fidelity of these meshes, we show several of these meshes
rendered as Catmull-Clark surfaces in Figure 16. These surfaces
clearly capture the geometry of the original datasets quite well. The
only noticeable artifacts are a few very small ripples in the surfaces,
which are mainly due to the fact that we do not enforce parametric
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Figure 16: Selected remeshing results from previous figures rendered as Catmull-Clark surfaces.

continuity between patches.

For all the examples that we have shown, eigenvector extraction is
by far the dominant cost. The time necessary to extract the first 60
eigenvectors, which is the maximum extent of the spectrum used in
any example, ranged from 2 to 25 minutes. Computing and sim-
plifying the initial Morse-Smale complex took less than 2 seconds,
optimizing a single complex at most 20 seconds, and the time to pa-
rameterize and resample the mesh was 5 seconds or less. Note that
the efficiency of the eigenvector extraction could be improved dra-
matically by using a hierarchical eigenvector solver [Barnard and
Simon 1994; Koren et al. 2002].

7 Discussion

Spectral Partitioning. A number of spectral graph partitioning
methods have been proposed in the past. The focus of the majority
of this work has been on spectral bisection of graphs. The Fiedler
vector assigns a scalar value to each vertex, and we can bisect the
graph by partitioning the vertices based on whether they are above
or below the median field value. A handful of methods have been
developed to accelerate this process by using the firstk Laplacian
eigenvectors [Hendrickson and Leland 1995; Liu and Zhang 2004].
While ours is also a spectral partitioning algorithm, it is fundamen-
tally quite different. The results produced by spectral bisection, and
its generalizations, are much more closely related to the graphcut
decompositions of Katzet al. [2003].

Morse Analysis of Eigenfields. While Morse theory is certainly
not novel using it to analyze eigenfields has proven to be surpris-
ingly effective. The critical points are typically distributed accord-
ing to geometric complexity without neglecting areas of low or con-
stant curvature. This results in Morse-Smale complexes which tran-
sition smoothly between region of different geometric detail but al-
ways provide a sufficiently dense base complex. Additionally, the
persistence based simplification performs nearly optimal in both
detecting noise as well as in choosing which vertices to remove.
Finally, considering the rather involved mathematical procedures
used to compute eigenfields it is interesting to note that the eigen-
fields contain a remarkably low amount of high frequency noise.

Remeshing Limitations. It is important to understand the prac-
tical limitations of the proof-of-concept remeshing method that we
have presented. Like most methods arising from the computer

graphics literature, we do not provide any firm guarantees on el-
ement quality (e.g., minimum angle). Therefore, this method may
not be suitable for use in finite element methods where such guar-
antees are critical for success. While our choice of a simple linear
parameterization scheme suits our expository goal of not artificially
correcting for problems in the base complex, it results in more para-
metric distortion than is absolutely necessary. For real-world use,
we recommend more sophisticated non-linear methods. Similarly,
we have used a “blind” semi-regular remeshing scheme that lays
down a uniform grid of quadrilaterals in the parametric domain
without regard for the shape of the surface. Optimizing the place-
ment of individual vertices could significantly improve the quality
of the output surfaces. There may also be cases where allowing
extraordinary points to occur on the interior of patches would, in
practice, improve the fidelity to the original shape.

8 Conclusions

In this paper, we have outlined a new theoretical framework for
quadrangulating polygonal manifolds. By using Morse theory to
analyze the structure of the Laplacian eigenfields of the surface, we
are able to produce appealing quadrangulations that arise directly
from the intrinsic shape of the manifold. Our use of the Morse-
Smale complex is topologically robust and guarantees that the base
complex is always quadrangular. We have also demonstrated that
the resulting base complexes are well-suited for remeshing the input
with a fully conforming semi-regular mesh consisting entirely of
quadrilaterals.

The results we have presented in this paper open a new line of re-
search aimed at describing and understanding shapes and geometry.
We have chosen semi-regular quadrangular remeshing as an exam-
ple which demonstrates that the Morse-Smale structure of Lapla-
cian eigenfields encodes fundamental information about the shape
of a piecewise linear manifold. But more broadly, these results are
based on several intriguing properties of the Laplace matrix and its
eigenfields that we have only begun to explore.

There is much that could be learned from a more thorough the-
oretical understanding of the structure of the Laplacian spectrum.
The majority of results in spectral graph theory tie the Laplacian
eigenvalues to various properties of the graph. The structure of
the eigenvectors is relatively unexplored. A clearer understanding
of the spectral structure should enable us to prove stronger results
about the quality of the final qudrangulation.
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We have noted that persistence-based simplification of the eigen-
fields ,as shown in Fig. 7, produces an appealing multiresolution
structure over the surface. Exploring the nature of this structure,
and its relation to the nesting of eigenfields of different frequencies
should prove valuable.

The optimization of the base complex geometry is also an area that
seems ripe for potentially fruitful improvement. Our current opti-
mization procedure is focused on straightening and smoothing the
paths which form the complex. Ultimately, the primary goal of
this optimization is to minimize parametric distortion within the
patch. A scheme to directly minimize this distortion should pro-
duce even better base complexes. It would also be worthwhile to
explore techniques for ensuring global parametric continuity. Fi-
nally, we believe it would be beneficial to consider locally optimiz-
ing the placement of critical points as their position, like the paths
connecting them, may be perturbed by the presence of noise in the
eigenfield.
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