# Multiresolution Modeling: Survey & Future Opportunities





University of Illinois at Urbana-Champaign, USA



September 1999



# The Problem of Detail

# Graphics systems are awash in model data

- very detailed CAD databases
- high-precision surface scans

## Available resources are always constrained

CPU, space, graphics speed, network bandwidth

#### We need economical models

want the minimum level of detail (LOD) required

# A Non-Economical Model



424,376 faces



60,000 faces

# **Automatic Surface Simplification**



# Automatic Surface Simplification Produce approximations with fewer triangles

- should be as similar as possible to original
- want computationally efficient process

# Need criteria for assessing similarity of models

- for display, visual similarity is the ultimate goal
- similarity of shape is often used instead
  - generally easier to compute
  - lends itself more to applications other than display

# Focus on Polygonal Models

# Polygonal surfaces are ubiquitous

- only-primitive-widely supported in hardware
- near-universal support in software packages
- output of most scanning & reconstruction systems

# Switching representations is no solution

- indeed, some suffer from the same problem
- many applications want polygons

# Will always assume models are triangulated

# **Historical Background**

# Function approximation [y=f(x)]

long history in mathematical literature

# Piecewise linear curve approximation

various fields: graphics, cartography, vision, ...

# Height field (i.e., terrain) triangulation

- research back to at least early 70's
- important for flight simulators

## Other Related Fields

# Geometry compression

simplification is a kind of lossy compression

## Surface smoothing

reduces geometric complexity of shape

### Mesh generation

- finite element analysis (e.g., solving PDE's)
- need appropriate mesh for good solution
- overly complex mesh makes solution slow

# Overview of Simplification Methods

# Manual preparation has been widely used

- skilled humans produce excellent results
- very labor intensive, and thus costly

#### Most common kinds of automatic methods

- vertex clustering
- vertex decimation
- iterative contraction

# **Optimal Approximations**

## Achieve given error with fewest triangles

no mesh with fewer triangles meets error limit

## Computationally feasible for curves

- O(n) for functions of one variable
- but  $O(n^2 \log n)$  for plane curves

#### Intractable for surfaces

- NP-hard to find optimal height field [Agarwal–Suri 94]
- must also be the case for surfaces

# **Vertex Clustering**

#### Partition space into cells

grids [Rossignac-Borrel], spheres [Low-Tan], octrees, ...

#### Merge all vertices within the same cell

triangles with multiple corners in one cell will degenerate



# **Vertex Decimation**

## Starting with original model, iteratively

- rank vertices according to their importance
- select unimportant vertex, remove it, and retriangulate hole

#### A fairly common technique

Schroeder et al, Soucy-Laurendeau, Klein et al, Ciampalini et al



### **Iterative Contraction**

#### Contraction can operate on any set of vertices

edges (or vertex pairs) are most common, faces also used

#### Starting with the original model, iteratively

- rank all edges with some cost metric
- contract minimum cost edge
- update edge costs



# **Edge Contraction**

A single edge contraction  $(v_1, v_2) \rightarrow v'$  is performed by

- moving  $v_1$  and  $v_2$  to position v''
- replacing all occurrences of v<sub>2</sub> with v<sub>1</sub>
- removing v<sub>2</sub> and all degenerate triangles



# **Vertex Pair Contraction**

#### Can also easily contract any pair of vertices

- fundamental operation is exactly the same
- joins previously unconnected areas
- can be used to achieve topological simplification



# Iterative Edge Contraction Currently the most popular technique

- Hoppe, Garland-Heckbert, Lindstrom-Turk, Ronfard-Rossignac, Guéziec, and several others
- simpler operation than vertex removal
- well-defined on any simplicial complex

# Also induces hierarchy on the surface

- a very important by-product
- enables several multiresolution applications

# Demo



# **Cost Metrics for Contraction**

# Used to rank edges during simplification

- reflects amount of geometric error introduced
- the main differentiating feature among algorithms

# Must address two interrelated problems

- what is the best contraction to perform?
- what is the best position v' for remaining vertex?
  - can just choose one of the endpoints
  - but can often do better by optimizing position of v'

## **Cost Metrics for Contraction**

## Simple heuristics

edge length, dihedral angle, surrounding area, ...

# Sample distances to original surface

- projection to closest point [Hoppe]
- restricted projection [Soucy–Laurendeau, Klein et al, Ciampalini et al]

#### Alternative characterization of error

- quadric error metrics [Garland–Heckbert]
- local volume preservation [Lindstrom\_Turk]

# **Must Also Consider Attributes**



Mesh for solution



**Radiosity solution** 

# **Must Also Consider Attributes**









10,000 faces

# **Simplification Summary**

# Spectrum of effective methods developed

- high quality; very slow [Hoppe et al 93, Hoppe 96]
- good quality; varying speed [Schroeder et al 92; Klein et al 96; Ciampalini et al 97; Guéziec 95 Garland-Heckbert 97; Ronfard-Rossignac 96; Lindstrom-Turk 98]
- lower quality; very fast [Rossignac-Borrel 93; Low-Tan 96]
- result is usually produced by transforming original

## Various other differentiating factors

- is topology simplified? restricted to manifolds?
- are attributes simplified or re-sampled into maps?

# Static Resolution is Not Enough







#### Model used in variety of contexts

- many machines; variable capacity
- projected screen size will vary

#### Context dictates required detail

- LOD should vary with context
- context varies over time
- with what level of coherence?
  - generally high coherence in view
  - possibly poor coherence in load

# **Need Multiresolution Models**

## Encode wide range of levels of detail

- extract appropriate approximations at run time
- must have low overhead
  - space consumed by representation
  - cost of changing level of detail while rendering
- can be generated via simplification process

# Image pyramids (mip-maps) a good example

very successful technique for raster images

# Discrete Multiresolution Models Given a model, build a set of approximations

- can be produced by any simplification system
- at run time, simply select which to render

# Inter-frame switching causes visual "popping"

- can smooth transition with image blending
- or use geometry blending: geomorphing [Hoppe]

# Supported by several software packages

RenderMan, Open Inventor, IRIS Performer, ....

# **Limits of Discrete Models**

## We may need varying LOD over surface

- large surface, oblique view (eg. viewer on terrain)
  - need high detail near the viewer
  - need less detail far away
- single LOD will be inappropriate
  - either excessively detailed in the distance (wasteful)
  - or insufficiently detailed near the viewer (visual artifacts)

### Doesn't really exploit available coherence

small view change may cause large model change.

# **Progressive Meshes**

# We get more than just final approximation

- sequence of contractions
- corresponding intermediate approximations

## Re-encode as progressive mesh (PM) [Hoppe 96]

- take final approximation to be base mesh
- reverse of contraction sequence is a split sequence
- can reconstruct any intermediate model
- allows for progressive transmission & compression

## PM's a Limited Multiresolution

## More flexibility is required

- local addition/subtraction of triangles
  - as conditions change, make small updates in LOD
  - this is the multi-triangulation framework [De Floriani et al]
- may require novel approximations

# Must encode dependency of contractions

- PM's imply dependency on all earlier contractions
- but we can reorder non-overlapping contractions

#### Every vertex on approximation corresponds to

- a connected set of vertices on the original
- hence a region on the surface: the union of neighborhoods

#### **Initial conditions**

every vertex set is a singleton, every region a neighborhood



#### A contraction merges corresponding vertex sets

remaining vertex accumulates larger surface region

#### When merging regions, can link them by a mesh edge

as shown on left hand side



#### Links within single region form spanning tree

- links within all regions form spanning forest
- any contraction order within regions is (topologically) valid

#### Regions always completely partition original surface



#### Pair-wise merging forms hierarchy

- binary tree of vertices
- also a binary tree of surface regions



# Example: Initial Vertex Neighborhoods



# Example: After 99% of vertices removed



# Example: After 99.9% of vertices removed



# **Vertex Hierarchies**



#### A cut through the tree

- contract all below cut
- remaining leaves are active
- determines partition
- and an approximation

#### **Encodes dependencies**

- PM's assume total order
- disjoint subtrees are indep.
- novel approximations arise
- but must avoid fold-over

## Vertex Hierarchies for View-Dependent Refinement

#### Multiresolution representation for display

- incrementally move cut between frames [Xia-Varshney, Hoppe, Luebke-Erickson]
- move up/down where less/more detail needed
- relies on frame-to-frame coherence
- can accommodate geomorphing [Hoppe]

#### Most common application of vertex hierarchy

- uses hierarchy only to guide active front evolution
- more flexibility & overhead than discrete multires.

## Further Refinement in Vertex Hierarchies

#### Also support synthetic refinement

- edge contraction is an inverse of edge split
- can synthesize temporary levels in tree by splitting edges
- fractal extrapolation of terrain surface, for example



# Applications Beyond Display Other important applications are appearing

- surface editing [Guskov et al 99]
- surface morphing [Lee et al 99]
- multiresolution radiosity [Willmott et al 99]

#### Still others seem promising

- hierarchical bounding volumes
- object matching
- shape analysis / feature extraction

## Multiresolution Model Summary

#### Representations are available to support

- progressive transmission
- view-dependent refinement
- hierarchical computation (e.g., radiosity)

#### **But limitations remain**

- vertex hierarchies may over-constrain adaptation
- adaptation overhead not suitable for all cases
- interacting multiresolution objects largely ignored

## **Looking Ahead**

#### We've reached a performance plateau

- broad range of methods for certain situations
- incremental improvement of existing methods

#### Major progress may require new techniques

- broader applicability of simplification
- higher quality approximations

#### Requires better understanding of performance

how well, in general, does an algorithm perform?

### **Greater Generality**

#### Many applications require non-rigid surfaces

articulated models for animation

#### Other model types also have complexity issues

tetrahedral volumes, spline patch surfaces, ...

#### Need to handle extremely large data sets

- precise scans on the order of 10<sup>9</sup> triangles
- this is where simplification is needed the most
- even at 10<sup>6</sup> triangles, many algorithms fail

## Too Large for Many Methods









80,000 faces

## Better Topological Simplification

#### Imperceptible holes & gaps can be removed

most methods do this only implicitly

#### Few if any methods provide good control

- when exactly are holes removed?
- will holes above a certain size be preserved?

#### Requires a better understanding of the model

- when to simplify geometry vs. topology
- seems to benefit from more volumetric approach

### **Better Performance Analysis**

#### Better criteria for evaluating similarity

- image-based metrics more appropriate for display
- metrics which accurately account for attributes

#### Most analysis has been case-based

measure/compare performance on single data set

#### More thorough analysis is required

- theoretical analysis of quality [Heckbert-Garland 99]
- provably good approximations possible?

## **Higher Quality Approximations**

#### Poor performance at extreme reduction levels

- algorithms do much worse than humans
- perhaps because all transform original into result

#### Simple iterative method is quite short-sighted

- only look one step ahead and never reconsider
- many consider only the local effect of operation

#### Consider separating analysis & synthesis

- first, build multi-level knowledge of surface shape
- then proceed with simplification

#### **Alternative Frameworks**

#### Greedy simplification is convenient but limited

- directly produce contraction sequence
- poor choices can never be reconsidered

#### Other, albeit expensive, approaches possible

- should produce a single sequence of contractions
- graph partitioning builds sequence in reverse
- more explicit optimization methods

#### **Conclusions**

#### Substantial progress since 1992

- simplification of 3D surfaces
- multiresolution representations (PM, hierarchies)
- application of multiresolution in different areas

#### There remains much room for improvement

- more effective, more general simplification
- better analysis and understanding of results
- other multiresolution representations

### Acknowledgements

#### Funded in part by

- National Science Foundation
- Schlumberger Foundation

#### Sample models courtesy of

- Stanford graphics lab bunny
- Iris Development dental mold
- Viewpoint DataLabs dragon
- GE/KitWare turbine blade
- Andrew Willmott dragon radiosity solution