
In Proc. 1997 ACM Symposium on Interactive 3D Graphics, pp. 83-90 and 189.

Real�Time Occlusion Culling for Models with Large Occluders

Satyan Coorg Seth Teller

Computer Graphics Group

MIT Laboratory for Computer Science

Abstract

E�ciently identifying polygons that are visible from a
dynamic synthetic viewpoint is an important problem
in computer graphics� Typically� visibility determi�
nation is performed using the z�bu�er algorithm� As
this algorithm must examine every triangle in the in�
put scene� z�bu�ering can consume a signi�cant frac�
tion of graphics processing� especially on architectures
that have a low performance or software z�bu�er�

One way to avoid needlessly processing invisible
portions of the scene is to use an occlusion culling
algorithm to discard invisible polygons early in the
graphics pipeline� In this paper� we exploit the pres�
ence of large occluders in urban and architectural
models to design a real�time occlusion culling algo�
rithm� Our algorithm has the following features� it
is conservative� i�e�� it overestimates the set of visi�
ble polygons� it exploits spatial coherence by using a
hierarchical data structure� and it exploits temporal
coherence by reusing visibility information computed
for previous viewpoints� The new algorithm signif�
icantly accelerates rendering of several complex test
models�

CR Categories and Subject Descriptors� I�	�	
Com�
puter Graphics�� Three�Dimensional Graphics and
Realism � visible line�surface algorithms� I�	�
Com�
puter Graphics�� Computational Geometry and Ob�
ject Modeling � object hierarchies�

Additional Keywords� Conservative visibility� temporal
coherence� spatial coherence� kD�trees�

� Introduction

Identifying visible polygons or eliminating hidden
polygons is an important component of e�cient scene
rendering algorithms� Despite the availability of high
performance z�bu�er hardware� a signi�cant fraction
of graphics machines have lesser or no hardware z�

Address� ��� Technology Square� Cambridge� MA ����	
Email� fsatyan�sethg�graphics�lcs�mit�edu

To appear in the ACM Symposium on Interactive �D
Graphics� Providence� Rhode Island� April ������ ����

bu�ering capabilities� Software z�bu�ering �e�g�� on
personal computers�� can be a rendering bottleneck�
Moreover� on many architectures� the z�test occurs
after other graphics processing �e�g�� shading� texture
mapping�� wasting computation on invisible portions
of the model�

One way to address this problem is to develop
occlusion culling algorithms that e�ciently identify�
then render� only the visible portions of the model
or a tightly�bounded superset thereof� In this paper�
we exploit the presence of large occluders in typical
architectural or urban models to design a real�time
occlusion culling algorithm�

Our algorithm is based on several ideas� First�
we propose a simple �and fast� visibility test that
identi�es whether some region of the model is com�
pletely�partially occluded by a set of occluders� Sec�
ond� we describe a cheap preprocessing step that iden�
ti�es nearby large occluders for all viewpoints� Fi�
nally� a hierarchical visibility algorithm repeatedly
applies the visibility test to determine the status of
tree nodes in a spatial hierarchy�

��� Related Work

Given a 	D model and a viewpoint� exact visibility
algorithms
��� ��� compute a description of the im�
age in terms of visible polygon fragments� Once such
a description is available� further processing can be
restricted to involve only the visible portions of the
scene� However� these techniques tend to be complex
and hence di�cult to use in interactive applications�
Instead� the z�bu�er algorithm
��� typically imple�
mented in hardware
��� is widely used�

Given the availability of hardware z�bu�ers� it
seems promising to overestimate the set of visible
polygons� then use a z�bu�er to render the �nal im�
age� This idea of overestimated or conservative visi�
bility has been exploited to design fast architectural
walkthrough systems
�� �� ��� ���� The idea in
���
is to subdivide the input model into cells� roughly
corresponding to rooms in a building� and use cell�
to�cell�eye�to�cell visibility to bound exact visibility
from above� Though this method eliminates most
invisible polygons in architectural models� its gener�
alization to models with less apparent cell structure
�e�g�� city models� appears di�cult�

An approach using octree�based spatial subdivi�
sion is used in
� to render only those polygons that
lie within the viewing frustum� However� this algo�
rithm does not exploit any occlusion properties of the
model�

The hierarchical z�bu�er algorithm
�� culls nodes
of an octree hierarchy by using a z�pyramid to re�
solve visibility queries� While this is a promising ap�
proach for implementing occlusion culling with hard�
ware support� it is di�cult to realize this algorithm
on current graphics architectures� as visibility queries
are not supported in hardware� and simulating the z�
pyramid in software entails signi�cant overhead� Be�
cause of its reliance on image space queries� this al�
gorithm is also susceptible to aliasing artifacts �al�
though� with an accompanying increase in complex�
ity� it is possible to avoid aliasing
����

A dynamic temporally coherent conservative vis�
ibility algorithm� described in
��� identi�es relevant
visibility events� i�e�� changes in visibility that will
occur in the near future� One drawback of this algo�
rithm is that it must reconstruct visibility informa�
tion for the continuous sequence of points between
each discrete pair of subsequent viewpoints assumed
by the moving observer�

Finally� recent algorithms proposed in
��� �	� ���
accelerate rendering by approximating sets of poly�
gons with texture maps� Visibility is resolved only
when computing the texture approximation corre�
sponding to a set of polygons� These textures are
used to render many frames� thereby reducing fur�
ther visibility processing� Texture approximation is
usually most e�ective for faraway polygons� as there
is little change in their image from one viewpoint to
the next� In contrast� occlusion culling can eliminate
even �invisible� nearby polygons�

��� Algorithm Overview

We assume that the input model is a static set of con�
vex polygons and that the number of vertices in each
polygon is bounded by some constant� Our system
uses a preprocessing step to merge identical input ver�
tices� This is useful in identifying polygons that share
edges� We assume no a priori knowledge of observer
motion�

Our algorithm chooses a small set of occluders
which will be later used for culling� This strategy
is motivated by the observation that� in many in�
teresting models� most of the occlusion is caused by
a few polygons �from any instantaneous viewpoint��
Crucially� occluders are chosen dynamically� as the
viewpoint changes� so that polygons typically act as
occluders for nearby viewpoints� but as occludees
�culled objects� for remote or oblique viewpoints �Fig�
ure ��� Usually� the occludee is not just a single poly�
gon� but a convex region of space �e�g�� a hierarchical
bounding box� containing many polygons�

Occluder

OccludeesViewpoint

Figure �� Occluder polygons and occludee objects for
an instantaneous viewpoint�

The rest of the paper is organized as follows� Sec�
tion � describes an algorithm to determine the con�
servative visibility status of an occludee with respect
to a set of occluders� This test is the basis of a vis�
ibility oracle in the dynamic algorithm presented in
Section 	� Section � presents the performance char�
acteristics of our algorithm� and Section � concludes�

� Conservative Visibility Testing

This section addresses the following problem� given
a viewpoint� a set of convex occluders and a convex
occludee� is the occludee visible� That is� does there
exists a line segment from the viewpoint to some point
on the occludee that meets no occluder� Our method
of answering this query uses the notion of supporting
and separating planes �Figure ��� Separating planes
of two convex polyhedral objects are planes formed by
an edge of one object and a vertex of the other such
that the objects lie on opposite sides of the plane�
Supporting planes are analogous� except that both
objects lie on the same side of the plane�

 Separa
tin

g

 Supporting
 A

T

1

 2

 2

1

 3

Figure �� This �gure shows occlusion in two dimen�
sions �a planar cross section of 	D�� Separating and
supporting planes of an occluder A and an occludee
T are shown� as is a synthetic viewpoint�

Consider the interaction between a single occluder
A and an occludee T �typically a bounding box�� This
can be completely described in terms of the plane
of the occluder and the supporting and separating

�

planes of the occluder and occludee� First� A can oc�
clude T only if the viewpoint lies in that half�space
of A which does not contain T � This region can
be divided into three qualitatively distinct regions as
shown in the �gure� In region �� T is not occluded by
A� in region �� T is partially occluded by A� and in
region 	� T is completely occluded by A�

The supporting and separating planes of A and
T can be used to detect which of these cases holds�
First� the planes are oriented toward the occluder to
form half�spaces� We say that a viewpoint satis�es a
plane i� it is inside the plane�s positive half�space� this
relation can be checked by performing an inner prod�
uct of the viewpoint with the plane equation� Full
occlusion occurs when all of the supporting planes
are satis�ed� that is� when the viewpoint is in the
intersection of the supporting half�spaces �region 	��
Partial occlusion occurs when all the oriented sepa�
rating planes are satis�ed� but some supporting plane
is not �region ��� Otherwise� there is no occlusion �re�
gion ���

Figure 	 shows occlusion caused by two connected
occluders� i�e�� two occluders that share an edge� If
the viewpoint is in the shaded region� T is occluded by
the combined e�ect of A and B� even though neither
occludes it alone� This case is handled by ignoring
the supporting planes through non�silhouette shared
edges �e�g�� edge E�� if both polygons adjacent to E
partially occlude T �

T

 E

 A

 B

Ignored

Figure 	� Occlusion by connected occluders A� B�

Note that occlusion occurs only if A and B lie on
opposite sides of E� as seen from the viewpoint � intu�
itively� E is relevant only when it is a silhouette edge
of the occluder as seen from the viewpoint� Figure �
shows a case in which ignoring the supporting plane
�dashed� through E would cause T to be classi�ed�
incorrectly� as fully occluded�

In general� a set of occluders A�� � � � � Ak jointly
occludes T if�

� A�� � � � � Ak partially occlude T � and none fully
occludes T �

� If two occluders Ai and Aj share an edge E�
they lie on opposite sides of E as seen from the
viewpoint� and

T
 A B

 E

Figure �� This �gure shows that supporting planes
through shared silhouette edges cannot be ignored�

� The signed distances of the viewpoint from all
planes� other than those supporting common
edges� are positive�

The above algorithm is simple to implement given
the supporting and separating planes corresponding
to a single occluder and occludee� An e�cient way to
compute these is described in Section ����

(c)

 B

 A

 C
 T

(a)

 C T A

 B

 D

(b)

 T

 A

 B

 D
 C

 E
 e

Figure �� This �gure shows occlusion in 	D� as seen
from the viewpoint� Part �a� shows occlusion caused
by connected occluders whose silhouette is convex in
the image� Part �b� shows occlusion by connected
occluders having a non�convex silhouette� Part �c�
shows occlusion by a set of disconnected occluders�

Consider Figure �� which depicts three di�erent
occlusion cases� The test described above detects
occlusion in Figure ���a�� as the supporting planes
through the �internal� edges are ignored� and the oc�
cludee lies entirely within the convex silhouette in the
image� The conservative visibility test may not detect

	

occlusion if the silhouette edges form a non�convex
polygon �Figure ���b��� In this case� the test fails as
the occludee appears to �cross� the line supporting
edge e in the image� Finally� the test does not detect
occlusion caused by a set of disconnected occluders
�Figure ���c��� In practice� we have found this to
be a reasonable tradeo� for architectural and urban
models� where most occlusion is due to large occlud�
ers acting alone or as part of a connected set� Note
that our visibility test is conservative� i�e�� it never
misclassi�es a visible entity as occluded�

��� Computing Supporting and Separating Planes

In principle� it is possible to precompute all planes
formed by occluder�occludee pairs� However� this
would be wasteful� as only a small fraction of such
planes would ever be used� Instead� we use a hy�
brid method that combines preprocessing and run�
time table lookups to compute supporting and sepa�
rating planes formed by an �arbitrary� occluder and
an axial bounding box �an occludee��

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�������
�������
�������
�������

�������
�������
�������
�������

���������
���������
���������
���������
���������
���������

N

 E
Box

Tangent
 Plane

Tangent
 Vertex

Figure �� Tangent planes through a polygon edge E�

We restrict the separating and supporting planes
of an occluder�occludee pair to the set of tangent
planes formed by occluder edges and occludee ver�
tices �Figure ��� and ignore those formed by occluder
vertices and occludee edges� Assembling only these
planes provides an exact test for full occlusion� and a
conservative test for partial occlusion� Tangent ver�
tices �and consequently� tangent planes� for each oc�
cluder edge are computed using the following steps�

�� Translate the occludee bounding box so that the
origin is one vertex of the edge�

�� Determine the silhouette of the bounding box as
seen from the origin� using a table lookup based
on the box�s vertices �Figure ��

	� In the �D projection with respect to the ori�
gin �along a direction toward the box�� the oc�
cluder edge projects to a single point� Deter�
mine tangents from this point to the box�s sil�
houette �Figure ��� As the property of tangency

�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������

Silhouette

Box

X

Y

Z

 Region
 containing
 origin

����������
����������
����������
����������
����������

Figure � Silhouette edges of an axial bounding box
when viewed from the origin�

is retained by projection� the tangent vertices
determined in �D are the tangent vertices in 	D�

Computing tangent vertices in �D is a table
lookup based on the location of the edge projec�
tion with respect to the silhouette edges� Due
to the special properties of the silhouette edges
�i�e�� projection of axial edges with respect to
the origin�� this computation can be easily per�
formed�

Tangent Vertex

 Projection of edge

 011110

111111011111

001111

011110

Figure �� The projection of a box with respect to the
origin �shown in �D�� Regions induced by extended
silhouette edges are numbered using ��bit codes con�
sisting of the signs of dot products with �directed�
silhouette lines� Tangent vertices are determined by
the location of the occluder edge�s projection�

This method speeds up computation of supporting
and separating planes� a key component of the visi�
bility test� by an order of magnitude over the naive
method of computing and checking planes through
each vertex of the bounding box�

�

Visible�OccluderSet S� kD�Tree Node T� Viewpoint P� PolygonSet OS�
TestOcclusion�S� T� P��
if �S does not occlude T� then �� all of subtree T is visible� report

Gather�T� OS��
else if �T is occluded� then �� all of subtree T is invisible� omit

return�
else if �T is a leaf� then

Gather�T� OS�� �� conservative� report T as visible
else

S� � fg�
for �Ai � S� do �� determine occluder set S�

if �Ai partially occludes T� then
S� � S� � fAig

for each child T � of T do �� apply S� to subtrees of T
Visible�S�� T �� P� OS�

Figure �� The visibility algorithm�

� The Visibility Algorithm

Applying the visibility test to every possible visual
interaction �which could consumeO�n�� resources� for
n polygons� is expensive� Instead� we use two tech�
niques to reduce the number of visibility tests per�
formed� First� the algorithm operates on a hierarchi�
cal data�structure� a kD�tree
	� organizing all model
polygons� Second� only a small� dynamically main�
tained set of occluders near the viewpoint is used to
determine occlusion �Section 	����

Given a kD�tree� the visibility algorithm �Fig�
ure �� reports those polygons in the kD�tree that are
not occluded by the speci�ed occluders� In the al�
gorithm� Gather�T� OS� simply collects all polygons
reachable from a kD�tree node T and unions them
to the set OS� TestOcclusion�S� T� P � determines the
visibility status of T with respect to occluders in the
set S when viewed from P � using the algorithm de�
scribed in Section ��

The visibility algorithm recursively applies the
conservative visibility test to determine the visibil�
ity status of each kD�tree node� First� the conser�
vative visibility test is applied to determine whether
the current node is invisible� If so� the algorithm re�
turns without performing any further work � the en�
tire subtree rooted at the current node is occluded�
If it fails� the algorithm recurses with those occluders
that partially occlude the kD�tree node� since only
these occluders can occlude any descendant kD�tree
node�

Complexity

The complexity of this algorithm is O�kv�� where v
is the number of kD�tree nodes visited and k is the

number of occluders� In the worst�case� this complex�
ity could be O�kn� if the algorithm tests all kD�tree
nodes against all occluders� In practice� the complex�
ity is lower� as only a fraction of the kD�tree nodes are
tested against each occluder �see Section � for further
details��

2

 1

 3

 O

Figure ��� kD�tree nodes classi�ed with respect to a
single occluder �O� and two consecutive viewpoints�
For clarity� subdivision in the kD�tree is assumed to
occur at the center of each kD�tree node�

Spatial Coherence

Figure �� shows kD�tree nodes visited during visi�
bility classi�cation of a hierarchy with respect to a

�

single occluder and two consecutive viewpoints� Note
that using the hierarchy exploits spatial coherence by
avoiding further testing of nodes that are completely
occluded �e�g�� node �� or that are completely visible
�e�g�� node ���

Temporal Coherence

For a moving observer� the algorithm caches the oc�
clusion relations � a list of supporting and separating
planes � at each visited kD�tree node� When the view�
point changes� the algorithm need only check existing
occlusion relations� and update those kD�tree nodes
whose visibility status has changed� For example� in
Figure ��� nodes in the dark region �e�g�� node 	� are
checked against the occluder in both the traversals�
For such nodes� the separating and supporting planes
that are needed to determine their visibility status
are computed only at the �rst viewpoint and reused
later� The cache entries corresponding to a node are
maintained until the node is no longer involved in the
visibility calculation �i�e�� until an ancestor node be�
comes fully occluded or fully visible��

Frustum Culling

View frustum culling can be incorporated into the al�
gorithm in a straightforward way� by �rst checking
whether the kD�tree node is inside the viewing frus�
tum before invoking the visibility algorithm� How�
ever� any supporting and separating planes computed
for nodes outside the viewing frustum are still re�
tained in the cache so that they can be reused later�

��� Dynamic Occluder Selection

The algorithm as described maintains the state of
each kD�tree node with respect to a �xed set of oc�
cluders� As the viewpoint moves� it is crucial to up�
date this occluder set to contain those polygons that
are �large� in the image� and therefore likely to oc�
clude substantial portions of the model� Likewise�
polygons that become small in apparent size should
be ejected from the set�

A simple metric for the occlusion potential of a
polygon from a given position is the solid angle it
subtends at that position� A reasonable estimate of
solid�angle is the quantity

�A� �N � �V �

k �Dk�

where A represents the area of the occluder� �N repre�

sents the normal� �V represents the viewing direction�

and �D represents the vector from the viewpoint to the
center of the occluder �Figure ���� This �area�angle�
metric captures several properties of the subtended

solid angle of the polygon� making it a useful approx�
imation� First� larger polygons have larger area�angle�
Second� the area�angle falls as the square of the dis�
tance from the viewpoint� as does subtended angle�
Third� maximum area�angle occurs when the view�
ing direction D is �head�on� with the occluder� and
falls with the dot product as the occluder is viewed
obliquely� While this metric di�ers from the solid�
angle in that it does not consider the actual shape
of the occluder� it is much simpler to compute� and
serves as a useful heuristic to identify large occluders
near the viewpoint�

N
D

A

V

O

Figure ��� Parameters in the area�angle metric�

Given a discretization of all possible viewing di�
rections� the occluder preprocessing algorithm uses
the area�angle metric to associate each kD�tree leaf
and viewing direction with those k occluders likely to
be most e�ective from viewpoints in that leaf� The
number of occluders k is a parameter supplied to the
preprocessing stage�

When interactive model viewing begins� the al�
gorithm locates the kD�tree leaf which contains the
initial viewpoint� The algorithm then uses the set
of k occluders associated with the kD�tree leaf and
discrete viewing direction closest to the current view�
ing direction� When the viewpoint moves outside the
kD�tree cell or the viewing direction changes substan�
tially� the set of occluders is modi�ed to correspond
to the current viewing position and direction� Note
that if the observer is moving smoothly� the set of oc�
cluders e�ective from the current viewpoint is likely
to be similar to the set of occluders e�ective from the
next viewpoint� and little or no changes need be made
to the occluder set�

��� Detail Objects

Much of the polygon complexity in urban and archi�
tectural models arises due to the presence of small
�detail� objects �e�g�� furniture in a building� foliage
in a city�� As they are also part of the kD�tree hi�
erarchy� these objects may be culled by the hierar�
chical culling algorithm� Objects that are not culled
are subjected to additional tests� Each such object
is tested against occluders that are �near� the object
�Figure ���� These tests can cull objects even if there
are no large occluders near the viewpoint�

�

D1
D2

D3

O1

O3

O2

Figure ��� Detail objects D�� D�� D	 and occluders
used to determine their visibility�

Occluders that are near detail objects can be de�
termined as follows� First� as detail objects are usu�
ally limited in spatial extent� they can be usefully
approximated as a single point �e�g�� the center of the
object�� Second� the problem of determining if the
detail object is visible from the viewpoint is identi�
cal to the problem of determining if the viewpoint is
visible from the detail object �i�e�� visibility between
two points is re�exive�� Thus� occluders that are
large when viewed from the center of the object �in
a viewing direction toward the viewpoint� are good
candidates to test� These are identi�ed and stored
for each object using the data structure computed in
Section 	��� Of course� once these occluders are de�
termined� it is necessary to perform the visibility test
on the entire detail object using separating and sup�
porting planes� instead of just on its midpoint�

� Results

We have implemented the algorithm described above�
as well as tools for visualizing its operation� For mod�
els consisting of a few thousand large occluders �and
hundreds of additional detail objects�� the algorithm
maintains interactive rates on an SGI OnyxTM work�
station �with a ��� MHz R���� processor� ��� MB of
main memory and an SGI RealityEngine�TM graphics
pipeline�� and culls a signi�cant fraction of all models
on average� Figure �	 �color plate� shows snapshots
from several interactive walkthroughs�

We studied the performance of the algorithm on
two models� the �fth �oor of Berkeley�s Soda Hall
building with furniture �Soda� and a city from View�
point Datalabs �City�� In our implementation� the
kD�tree is constructed by splitting the current kD�
tree node alternately in each of the three dimensions�
and choosing a splitting plane that results in a roughly
balanced partitioning of the polygons� The kD�tree is
of height � �around ��� nodes� and the number of oc�
cluders is �xed at 	� per direction �for � directions�

in these experiments� Initialization and kD�tree con�
struction used about � seconds of CPU time� The re�
sults reported below are averaged over the viewpoints
visited during smooth ��gure �� walkthroughs of the
models�

Table � shows the e�cacy of the culling algorithm�
Occlusion culling reduces the rendering load �in terms
of polygons drawn� by a factor of six to eight over
frustum culling� The speedup obtained due to this
reduction of rendering load depends on the perfor�
mance of the hardware graphics pipeline � the lower
the performance� the higher the bene�t of occlusion
culling� Table � shows the time spent in culling and
drawing these two models� we report these times for
the Onyx as well as an SGI Indigo� ElanTM worksta�
tion �with a ��� MHz R���� processor�� which has
less powerful graphics hardware� Note that the algo�
rithm reduces total rendering time by a factor of � on
the Onyx� and by a factor of � on the Elan�

Scene Polygons Frustum Occlusion
Soda �	���	� ��� ���
City ������� 	��� ���

Table �� The column Frustum shows the percentage
of polygons drawn after only view frustum culling�
and the column Occlusion shows the percentage of
polygons drawn after frustum and occlusion culling�

Scene Frustum Occlusion
Cull Draw Total Cull Draw Total

Onyx
Soda �� �	 �� � �� 	
City �� ��� ��	 �� �� ��

Elan
Soda �	 �	� ��� 	� � ��
City �� ��� ��� 	� ���

Table �� The columns labeled Frustum show culling
and drawing times after only view frustum culling�
The columns labeled Occlusion show culling and
drawing times after frustum and occlusion culling�
All times are reported in milliseconds�

��� Spatial and Temporal Coherence

The visibility algorithm maintains �and tests� only
��	� kD�tree nodes per frame �	����� of the kD�
tree nodes in viewing frustum�� re�ecting the spatial
coherence exploited by the algorithm� Its use of tem�
poral coherence is indicated in Table 	� which shows
the time spent in the algorithm Visible �excluding
frustum culling� as the speed of the observer is var�
ied� In this experiment� the observer moves along the
��gure �� path with di�erent speeds� The algorithm
spends lesser time for more slow moving observers�

re�ecting the temporal coherence exploited by the al�
gorithm�

Scene Time in Visible �msec�
����x ���x �x �x �x �x ��x

Soda � �� �� �� 	� �� ��
City �� �� �� �� 	� �� ��

Table 	� Time spent in visibility processing for an
observer moving at increasing speed� The speeds are
given as multiples of the slowest speed� which corre�
sponds to �walking� speed in Tables � and ��

� Conclusion

This paper describes an e�cient occlusion culling al�
gorithm that exploits the presence of large occluders
in urban and architectural models� and culls a sig�
ni�cant fraction of two test scenes� The algorithm is
conservative in that it uses only simple object�space
tests to detect occlusion� By organizing the polygons
in a kD�tree� it exploits spatial coherence� By caching
occlusion relations and large occluders across view�
points� it exploits temporal coherence in the motion
of the observer�

In future work� it would be interesting to apply
techniques developed in this paper for models that
do not contain large occluders �e�g�� CAD models of
airplanes or submarines�� One promising approach is
to construct ��ctitious� occluders that conservatively
approximate the occlusion caused by a large mesh of
triangles� Also� we are investigating strategies for
adaptively choosing k� the size of the occluder set
dynamically maintained by the visibility algorithm�

Another interesting area of future research is in�
tegration of occlusion culling techniques with tex�
ture based approximation
��� �	� ���� Finally� oc�
clusion culling techniques presented here �especially
those based on table lookup� may be amenable to
hardware implementation� yielding further speedups�

References

�� Airey� J� M�� Rohlf� J� H�� and Brooks� Jr��
F� P� Towards Image Realism with Interac�
tive Update Rates in Complex Virtual Building
Environments� ACM Siggraph Special Issue on
���� Symposium on Interactive �D Graphics 	
�
� ������� ������

�� Akeley� K� RealityEngine Graphics� SIG�
GRAPH ��� Conference Proceedings ����	��
��������

	� Bentley� J� Multidimensional binary search
trees used for associative searching� Communi�
cations of the ACM �� ������ �������

�� Catmull� E� E� A Subdivision Algorithm for
Computer Display of Curved Surfaces� PhD the�
sis� University of Utah� Dec� ����

�� Coorg� S�� and Teller� S� Temporally Coher�
ent Conservative Visibility� In Proc ��th An�
nual ACM Symposium on Computational Geom�
etry ������� pp� ����

�� Funkhouser� T�� S�equin� C�� and Teller� S�
Management of Large Amounts of Data in Inter�
active Building Walkthroughs� In Proc ���	
Workshop on Interactive �D Graphics �������
pp� ������

� Garlick� B�� Baum� D� R�� and Winget�
J� M� Interactive Viewing of Large Geometric
Databases Using Multiprocessor Graphics Work�
stations� Siggraph ��� Course Notes �Parallel Al�
gorithms and Architectures for �D Image Gener�
ation� �������

�� Greene� N�� and Kass� M� Error�Bounded
Antialiased Rendering of Complex Environ�
ments� In SIGGRAPH ��
 Conference Proceed�
ings ������� pp� ������

�� Greene� N�� Kass� M�� and Miller� G� Hier�
archical Z�Bu�er Visibility� In SIGGRAPH ���
Conference Proceedings ����	�� pp� �	������

��� Luebke� D�� and Georges� C� Portals and
Mirrors� Simple� Fast Evaluation of Potentially
Visible Sets� In Proc ���� Symposium on In�
teractive �D Graphics ������� pp� ��������

��� Maciel� P� W� C�� and Shirley� P� Visual
Navigation of Large Environments Using Tex�
tured Clusters� In Proc ���� Symposium on
Interactive �D Graphics ������� pp� �������

��� Naylor� B� F� Partitioning Tree Image Rep�
resentation and Generation from 	D geometric
models� In Proc Graphics Interface ��	 �������
pp� ��������

�	� Shade� J�� Lischinski� D�� Salesin� D��
DeRose� T�� and Snyder� J� Hierarchical
Image Caching for Accelerated Walkthroughs
of Complex Environments� In SIGGRAPH ���
Conference Proceedings ������� pp� �����

��� Sutherland� I� E�� Sproull� R� F�� and
Schumacker� R� A� A Characterization of Ten
Hidden�Surface Algorithms� Computing Surveys
�� � ������ �����

��� Teller� S�� and S�equin� C� H� Visibility Pre�
processing for Interactive Walkthroughs� SIG�
GRAPH ��� Conference Proceedings ������� ���
���

��� Xiong� R� A Strati�ed Rendering Algorithm for
Virtual Walkthroughs of Large Environments�
Masters Thesis� EECS Department� MIT� May
�����

�

White� Node borders
Yellow� Current leaf
Black� Occluders
Dark Blue� Outside frustum
Green� Culled
Light Blue� Drawn

Figure �	� Frames from walkthroughs of Soda �left� and City �right� with culling visualization�

�

