
A Survey of Mesh Compression Techniques

Eric Lorimer
∗

University of Illinois, Urbana-Champaign

ABSTRACT
As the field of computer graphics advances, computers and
graphics hardware become more powerful. However, the size
and complexity of the meshes we wish to represent are also
increasing to the point where we must find some way to com-
press this information in order to make storage and trans-
mission feasible (or more feasible). This paper will survey
the research in mesh compression, provide some background,
and look at future directions in the field.

1. INTRODUCTION
In many areas of computer graphics, there arises a need
to work with very large meshes. The Digital Michelangelo
project, for example, has scanned the David statue at a reso-
lution of .29mm which requires 32GB of data to store. Aside
from the problems of manipulating such a large data set on
machines with a limited amount of main memory (usually
much lower than 32GB), techniques for compressing meshes
such as these are becoming increasingly important in order
to make storage and transmission more feasible. In addition,
there remains the elusive possibility of streaming 3D con-
tent over the Internet in real-time. Many games (e.g. role-
playing games) experience bottlenecks in bandwidth due in
large part to transmission of game data including mesh data.

Thus, we see the need for compression at two ends of the
spectrum. One side seeks to compress relatively small meshes
further to reduce transmission time over slow Internet links.
The other side seeks to compress very large meshes in order
to make storage and transmission more feasible.

A mesh can be simply defined as the set of vertices, edges,
faces together with their incidence relationships. We can
consider the incidence relationships (i.e. what faces are in-
cident on a vertex, what edges are incident on a face, etc...)
the mesh connectivity and the vertex positions the mesh ge-
ometry. Most mesh compression techniques have treated the

∗lorimer2@uiuc.edu

Figure 1: EdgeBreaker CLERS symbols

mesh geometry and the mesh connectivity separately.

2. COMPRESSING MESH CONNECTIVITY
One of the earliest attempts to encode mesh connectivity
was made by Deering [1]. In this paper he builds on the
idea of a generalized triangle strip in which the direction to
extend the chain when appending a new vertex is encoded
as well. Deering introduces a fixed-length (16) queue called
the mesh buffer [1]. Vertices must be explicitly pushed and
later referenced from this queue. This avoids the problem
with generalized triangle strips requiring frequent restarts or
duplicating already decoded vertices. Deering defines four
operations for his mesh buffer - replace oldest, replace mid-
dle, restart clockwise and restart counterclockwise. In ad-
dition, Deering preserves the advantage of triangle strips in
that they can be decoded by a single linear scan of the data.
Deering’s method, after cutting the mesh into strips, has no
way to stitch it back together.

EdgeBreaker [10] is a more sophisticated connectivity com-
pression algorithm. EdgeBreaker is a face-based compres-
sion scheme which traverses the faces (triangles) of the mesh
generating a spanning tree. The algorithm encodes one of
five symbols at each face to keep the history so that the pro-
cess can be reversed during decoding. The five symbols form
the clers string and are defined as follows. A C is encoded
when the vertex has not been visited. A L is encoded when
the left triangle has been visited, a R is encoded when the
right triangle has been visited, an E is encoded when both
left and right triangles have been visited and S is encoded
when neither left or right triangles have been visited. (See
figure 1) In the S case, EdgeBreaker recurses on the right
subtree and then the left. EdgeBreaker can compress the
connectivity of the mesh to near optimal rates, normally
around 2 bits/vertex.

A more elegant formulation of the algorithm is described by
Rossignac [7]. This implementation makes use of a corner



table data structure which makes use of two tables to store
the vertices and their opposite corners. This allows creation
of functions such as ”next corner around triangle” and ”pre-
vious corner around triangle” easily. The entire algorithm
can be succinctly expressed in only a page of pseudocode.

Although EdgeBreaker is a simple, efficient method for com-
pressing the connectivity of a mesh, it has some limitations.
First, EdgeBreaker as originally expressed is limited to tri-
angle meshes. In practice, as many meshes are triangulated,
this may not seem a large problem, but nevertheless it limits
the areas in which it can be applied. Second, EdgeBreaker
requires random access to the vertices. This is inconvenient
for gigantic meshes for out-of-core processing.

Isenburg et al. [6] deal with the limitation of triangulated
meshes and extend EdgeBreaker to deal with arbitrary poly-
gon meshes. Gumhold and Strasser [3] use a similar idea
as EdgeBreaker in their Cut-Border-Machine, but have the
advantage of single-pass encoding and decoding making it
more useful for out-of-core processing applications.

3. COMPRESSING MESH GEOMETRY
3.1 Lossless Methods
Mesh geometry refers to the set of vertex positions of the
graph. The earliest and still most popular method involves
a two-stage process of quantization and predictive encoding.
Quantization reduces the range of the data. In the context
of geometry compression, quantization takes the three com-
ponents, (x, y, z), of each vertex and stores them in a fixed
number of bits (typically 10-14 is sufficient). The quantized
mesh at 10-14 bits is visually indistinguishable from the orig-
inal (usually 32 bits). Therefore, this quantization can be
considered ”lossless.”

Further quantization, however, introduces very noticeable
high-frequency noise [12]. Sorkine et al [12] show how this
high-frequency distortion can be converted to low-frequency,
large-scale geometry distortion which is less noticeable to
the human visual system (though still quite significant) by
applying the Laplacian to the vertices before quantizing to
generate ”δ coordinates” which are then quantized and the
process is reversed on the decoding side. This produces
much more aesthetically pleasing results, but it is debatable
whether distorting the low-frequency components is more or
less acceptable than high-frequency artifacts.

The second part of these lossless compression algorithms
involves some form of spatial prediction. Based on the fact
that the decoding process usually loosely orders the vertices
by position and that within a local region vertex positions
are highly correlated, spatial prediction attempts to ”guess”
the location of the next vertex given the already decoded
vertices. Linear predictive coding is a simple scheme which
uses a linear combination of a small number of previous
vertices to predict the next vertex. The most simple linear
rule is to predict the vertex to be the same as immediately
preceding vertex. This leads to a simple delta-encoding.

The most widely used prediction rule, the ”parallelogram
predictor,” is based on the observation that adjacent tri-
angles tend to form parallelograms, therefore it predicts
the next vertex to form a parallelogram with the previous

Figure 2: Touma-Gotsman parallelogram predictor

three [13]. This works well, but fails to account for the
curvature in the mesh and cannot predict the crease angle
between adjacent triangles. [Fig. 1]

The predicted vertex is then compared to the actual vertex
position and this difference encoded into the output stream.
When the predicted vertex position and actual vertex posi-
tion are close, the difference can be stored in fewer bits than
would be required to store the actual (quantized) position.
There are various ways to encode this difference.

3.2 Lossy Methods
Because the spatial prediction rule is fixed by the algorithm,
the only way to gain further compression improvements is in
the quantization stage in the lossless algorithm. However,
as noted, agressive quantization leads to distinct artifacts
and can no longer be considered lossy.

Karni and Gotsman [8] propose to use spectral analysis to
take advantage of the information present in the connectiv-
ity to aid in the geometry compression. Building on the
signal processing framework introduced by Taubin [11] for
surface fairing, they decompose the Laplacian matrix into
its orthogonal eigenvectors and project the geometry signal
(each x, y, z component separately) onto this basis.

The Laplacian matrix is a sparse n x n matrix (n is the
number of vertices) defined as follows:

Lij =

8
><
>:

−1 if i = j,

1/di if i and j are neighbors,

0 otherwise.

where di is the degree (or valence) of vertex i.

They succeed in demonstrating that by discarding the ”high-
frequency” (eigenvectors with large corresponding eigenval-
ues) components they can compress the mesh with less dis-
tortion than the lossless algorithm using the parallelogram
predictor.

However, computing the eigenvectors of the sparse Laplacian
is prohibitively expensive for anything larger than trivial
meshes (approximately 600 vertices). In addition, numeri-
cal stability becomes and issue when computing eigenvectors
of very large matrices. Their algorithm relies on mesh parti-



tioning to make the problem feasible [8], but this is far from
ideal.

More recently, Karni and Gotsman [9] suggest using fixed
spectral basis vectors computed from a 6-regular triangle
mesh. This is convenient as it allows the encoder and de-
coder to use the FFT to compute the basis vectors. The
problem then reduces to mapping vertices in the ”candi-
date” mesh (the mesh they wish to compress) into vertices
in the ”host” mesh. Where the number of vertices, and in
particular, the number of boundary vertices is not the same,
they augment the candidate mesh by placing new vertices in
such a way as to normalize the degree of the vertices in the
mesh. This augmentation is just a special case of remeshing.
They show very satisfactory results - a small loss in qual-
ity for the potential to encode and decode the mesh very
efficiently.

In principle, spectral analysis compression methods can be
used for progressive transmission, but in practice little work
has been done in this area likely due to the fact that the
encoding and decoding time tend to dominate the algorithm
and transmission time is not usually a bottleneck.

Spectral methods work best on smooth meshes where most
of the energy is concentrated in the low frequencies. Meshes
generated from CAD models, for instance, with sharp edges
which must be preserved are not well suited to spectral com-
pression methods.

4. MULTIRESOLUTION AND PROGRES-
SIVE COMPRESSION METHODS

4.1 Progressive Meshes
Another significantly different approach to compressing meshes
than the standard face-based connectivity coding and geom-
etry compression recognizes that simplification can be con-
sidered a form of compression, albeit a very lossy one.

There are three components of progressive simplification
compression methods. First, the choice of the simplifica-
tion operator. Second, the choice of a metric to determine
which mesh element to remove. Third, an efficient coding
of the information to reconstruct the mesh.

By defining an invertible simplification operator and record-
ing the steps during simplification, simplification can be
used for lossless compression as well as lossy compression.
Edge collapse simplification schemes such as Hoppe’s Pro-
gressive Meshes [4] are well suited for this. The inverse
of an edge collapse is a vertex split which inserts a ver-
tex into the mesh next to an existing vertex and morphs it
into place creating a new edge. Hoppe chooses the edge to
collapse based on a complex energy minimization problem
which yields high quality results but simpler edge collapse
simplification methods exist (e.g. quadric error metric [2])
which might be more suitable for real time progressive com-
pression.

Hoppe [5] shows that Progressive Meshes can be used to
compress meshes to approximately 6 bits/vertex.

4.2 Wavelets

Wavelet compression techniques have proven very successful
in the area of 2D image compression. The recent JPEG2000
standard and the MPEG4 still image coder both use wavelets
to compress images. So it is not surprising that recent re-
search in mesh compression has also tried to exploit wavelets
for compression. The fundamental difference between im-
ages and meshes, however, is that images are sampled on
a regular 2D grid whereas meshes, in general, have very ir-
regular connectivity and sampling. Thus, much of the focus
in wavelet mesh compression involves remeshing techniques
typically based on subdivision schemes to produce a semi-
regular meshing to exploit the wavelet transform.

During the remeshing, a sequence of approximations at dif-
ferent resolutions is generated. The wavelet transform con-
verts this sequence into a base mesh and a sequence of co-
efficients which can be efficiently encoded.

An outstanding problem in all lossy geometry compression
schemes is the choice of an appropriate visual metric to
guide both the simplification as well as for measuring rate-
distortion in order to evaluate and compare methods. Karni
and Gotsman [8] propose a visual metric which is the aver-
age of the geometric distance between the models and the
distance between the Laplacian (normals). Sorkine et al.,
trying to show that the normal distortion is more impor-
tant than geometric distortion, naturally argue that the ra-
tio should significantly favor preserving normal distortion.
In any case, finding a suitable visual metric for lossy com-
pression methods is still very much an open problem.

5. CONCLUSION
Mesh compression has come a long way driven by the de-
sire to represent more and more detailed objects (like the
David statue). This trend is likely to continue and as long as
the complexity of the models grows faster than storage and
transmission improvements, mesh compression will remain
a topic of research. It is also clear that lossless mesh connec-
tivity compression has nearly reached the optimal limit and
not much more work can be done to improve connectivity
compression. However, compressing mesh geometry is still a
difficult problem with no clear-cut solution. Novel methods
like spectral analysis and wavelet transforms could provide
new insights and directions for future research. When the
restriction of losslessness is lifted, even more techniques be-
come possible. An important issue to be resolved before
lossy compression methods can be fully evaluated is the def-
inition of a suitable visual error metric.

6. REFERENCES
[1] M. Deering. Geometry compression. In Proceedings of

the 22nd annual conference on Computer graphics and
interactive techniques, pages 13–20. ACM Press, 1995.

[2] M. Garland and P. S. Heckbert. Surface simplification
using quadric error metrics. Computer Graphics,
31(Annual Conference Series):209–216, 1997.

[3] S. Gumhold and W. Strasser. Real time compression
of triangle mesh connectivity. Computer Graphics,
32(Annual Conference Series):133–140, 1998.

[4] H. Hoppe. Progressive meshes. Computer Graphics,
30(Annual Conference Series):99–108, 1996.



[5] H. Hoppe. Efficient implementation of progressive
meshes. Computers and Graphics, 22(1):27–36, 1998.

[6] M. Isenburg and J. Snoeylink. Face fixer: Compressing
polygon meshes with properties. In K. Akeley, editor,
SIGGRAPH 2000, Computer Graphics Proceedings,
pages 263–270. ACM Press / ACM SIGGRAPH /
Addison Wesley Longman, 2000.

[7] A. S. Jarek Rossignac and A. Szymczak. 3d
compression made simple: Edgebreaker on a corner
table. In Proceedings of Shape Modeling International
Conference, Genoa, Italy, 2001.

[8] Z. Karni and C. Gotsman. Spectral compression of
mesh geometry. In K. Akeley, editor, SIGGRAPH
2000, Computer Graphics Proceedings, pages 279–286.
ACM Press / ACM SIGGRAPH / Addison Wesley
Longman, 2000.

[9] Z. Karni and C. Gotsman. 3d mesh compression using
fixed spectral bases. June 2001.

[10] J. Rossignac. EdgeBreaker: Connectivity compression
for triangle meshes. IEEE Transactions on
Visualization and Computer Graphics, 5(1):47–61,
/1999.

[11] G. Taubin. A signal processing approach to fair
surface design. Computer Graphics, 29(Annual
Conference Series):351–358, 1995.

[12] C. Touma and C. Gotsman. High-pass quantization
for mesh encoding. Graphics Interface ’98 Conference
Proceedings, pages 26–34, 1998.

[13] C. Touma and C. Gotsman. Triangle mesh
compression. Graphics Interface ’98 Conference
Proceedings, pages 26–34, 1998.


