
Survey of Isosurface Extraction and Surface Reconstruction

Ivan Lee
CS 598 MJG

1. Introduction
 There are numerous ways to scan in a model: Magnetic Resonance Imaging (MRI),
Computed Tomography (CT), laser range scanners, and Positron Emission Tomography (PET)
are just a few examples. With these scans come large amounts of data that represent the model
of interest. Consequently, this data can be a mix of unorganized points with no explicit
information on connectivity or a series of images with coloring to represent different tissue in the
human body. With this data, the question at hand is how to connect this data together to
reconstruct the original model.
 The difference between isosurface extraction and surface reconstruction was hinted above.
For MRI, CT, and PET scans, a series of slices are created, each of which are coded by varying
color or grayscale values. Each of these values represent layers of a function, which, when
combined, creates a grid of isosurface values that are essentially a discretization of a scalar field,
F(x,y,z). The goal of isosurface extraction is to extract the surface representing all points in this
scalar field where F(x,y,z) = c, where c is the desired isosurface contour constant. In contrast,
laser scanners measure the distance from the scanner to wherever the laser strikes the surface,
resulting in a series of points that rest on the surface. Surface reconstruction deals with building
faces from these unconnected vertices to recreate the scanned model.

2. Desired Algorithm Properties
 As more and more research is conducted, algorithms have begun to develop a series of
desirable properties. Curless and Levoy [2] outline one such list for mesh producing algorithms
to possess. Though these were outlined in the context of surface reconstruction, many of them
apply to isosurface extraction as well:

- Time and space efficiency: An algorithm lacking this quality makes it impractical to
use in the field and only valid to discuss in theory.

- Robustness: Algorithms not handling special cases will also be unusable.
- Limited assumptions: Assumptions take away from the robustness of an algorithm;

however, some may be unavoidable for the proposed algorithms. Assumptions about
the geometry’s topology can lead to significant shortcomings.

3. Definitions
 Given a surface, there are a number of scalar functions that can represent the surface. The
requirement of the function, f, is that f(x,y,z) = 0 for any point on the surface. For points off of
the surface, there are no restrictions. One such function is a scalar distance field in which the
value at a given point is the distance to the closest point on the surface. A directed distance
field, as defined by Kobbelt et al. [9], stores the distance to the surface along each of the
coordinate axes.
 Given a set of vertices, V, the Voronoi cell of a vertex, vi, is the region of space where all
points in that region are closer to vi than any of the other vertices in V. A Voronoi diagram
(figure 1) is the partitioning of a space containing V into these cells. A Voronoi vertex in Rd is a

point that is equidistant to d+1 sample points. These Voronoi vertices can be located in the
Voronoi diagrams where two Voronoi cell boundaries intersect.

Figure 1: A Voronoi diagram (left) and its triangulation with the Voronoi vertices (right)
Amenta et al. [4]

 The dual of the Voronoi diagram is the Delaunay triangulation. A way of finding the
Delaunay triangulation is triangulating the vertices such that the circumcircle of all triangles do
not contain any other vertices. This accomplishes minimizing the maximum internal angle of all
the triangles and results in a “nice” triangulation. Another nice property is that the boundary of
the triangulation is the convex hull of the vertices. One way to find the triangulation in R2 is to
project (x,y) to the paraboloid x2 + y2, find the convex hull of the projection, and project it back
down to the plane.
 The medial axis is the set of points that is the closest point to more than two points on the
surface. In two dimensions, the medial axis can be approximated by the Voronoi vertices,
however this extension cannot be made so easily to three dimensions. For this, we introduce the
idea of poles, which are the two boundary vertices of a Voronoi cell that are farthest from the
point the cell is built around. These poles are usually on opposite sides of the surface, though
some special cases of the crust algorithm may not enforce this requirement. These poles
approximated the medial axis in three dimensions.

4. Isosurface Extraction
 Given a scalar field function, f(x,y,z), the goal of isosurface extraction is to create a mesh
representing a contour surface f(x,y,z) = c. The Marching Cubes algorithm (Lorensen and Cline
[11]) provides one solution to this problem that offers a few new features over previous
algorithms.

4.1. Previous Work
 Keppel [8] started on the contour surface and progressively connected triangles on the
surface between adjacent slices. However, an isosurface with more than one component would
cause ambiguities for connecting contours. Farrel [5] and Hohne and Bernstein [7] used ray
casting to find the surface and shading it with hue gradients or grayscales. A disadvantage of
these ray casting algorithms is that they result in approximate shading with an unnormalized
gradient.

4.2. Marching Cubes

 The Marching Cubes algorithm partitions the space containing the scalar field into cubes.
For a given scalar value, c, each vertex in the voxel grid is assigned a value of 1 if it is greater
than or equal to the value and 0 otherwise. This creates 28 possible polygonizations of the cube,
which can be reduced using rotational symmetry and swapping inside and outside vertices to
reduce it down to 15 cases, which can be seen in Figure 2. A lookup table is created, which can
be indexed by creating an 8 bit index from each vertex of the cube whose entry in the table
points to the polygonization.

Figure 2: The 15 possible combinations. http://www.exaflop.org/docs/marchcubes/ind.html

 The normal at a surface point can be calculated by estimating the gradient of the scalar field
function at that point. To estimate the gradient of a point within a cube, the gradient at each
vertex of the cube is estimated by taking central differences of the scalar field:

z
kjiFkjiFkjiG

y
kjiFkjiFkjiG

x
kjiFkjiFkjiG

z

y

x

∆
−−+

=

∆
−−+

=

∆
−−+

=

),,1(),,1(),,(

),,1(),,1(),,(

),,1(),,1(),,(

 These central differences create a unit normal vector at each of the cube’s vertices, which can
then be interpolated to the surface point of concern within the cube.
 Some initial enhancements were proposed in Lorensen and Kline [11] to speed up the
original algorithm. One of these is to take advantage of the spatial coherence by reusing the
values from adjacent cubes. By doing this, for all cubes other than those on the boundary, only
three of the edges need to calculate the position along the edge where the surface intersects it.
This provides a speedup factor of 3. Also, the ability to create CSG objects with Marching

Cubes was added by allowing Boolean operations and creating a truth table to see if a triangle
should appear in the cube being evaluated.
 The Marching Cubes algorithm produces some artifacts when generating a mesh. Some
aliasing occurs at sharp edges on the model. This occurs because the algorithm encloses a cube
around the sharp edge and no matter how fine the cube size is, the edge or corner is still sharp in
the cube. The implication of this is that the normal on the surface in the cube does not converge
to the surface’s normal, which does happen for smoother portions of the surface, unless the grid
happens to line up directly with one of the sharp edge’s faces. Also, with the original algorithm,
a uniform sampling is done so that there is a uniform distribution across the surface despite
varying levels of detail on the surface. Additionally, this causes a uniform aliasing that vaguely
represents the grid’s cubic structure. These have all been topics of research in other papers, such
as in the extended Marching Cubes algorithm explained in section 4.3.

4.3. Extended Marching Cubes
 In the original Marching Cubes algorithm, sharp edges create undesirable artifacts. In
Kobbelt et al [9], additional vertices are added to account for these sharp features.
 To accomplish this, a couple modifications were made to the original algorithm. Instead of
using the scalar distance field, the directed distance field, as defined in section 3, obtains more
information than if the algorithm were to just interpolate the scalar values. As seen in figure 3,
using the scalar distance field does not give information of the direction to the surface, and a
linear interpolation of the values results in an errant estimation of the intersection point of the
surface with the edge. Instead, the directed distance field actually provides the exact intersection
point with the gird axis. Another modification is a feature detection algorithm that adds vertices
to the mesh to bring out these features.
 For the algorithm itself, the addition occurs when using the local information of the directed
distance field. A feature detection algorithm is used that compares the normals of neighboring
surfaces of a cell, and if the angle of the cone spanned by these normals is greater than some
threshold, then we tag the cube to have a feature. Once this detection has been made, the
normals at these points are used to find an intersection between the tangent planes along the
surface in the given cube instead of directly connecting the edge intersection points. This
intersection creates a new sampling point which results in an increased convergence rate
compared to just a normal linear interpolation between edge intersections. To further
differentiate features, the maximum deviation of the normals from each other is calculated, and a
threshold is used to differentiate between edges and corners. A final step flips edges between
adjacent cells with features present. An assumption made in this algorithm is that there is at
most one sharp feature in each cell. With this assumption, these sharp features can be assumed
to be connected between adjacent feature cells, and thus this edge flipping creates the desired
edge or corner.

Figure 3: Computing the intersection location of the surface with the cell edges. The left
figure shows uses scalar distance fields, and the right uses directed distance fields.

(Kobbelt et al. [2]

 The advantages of this algorithm over the original one are straightforward. It was designed
for feature detection, thus sharp edges and corners can finally be handled adequately. Also, the
use of directed distance fields provides the algorithm with much more information without much
additional computational cost. However, the feature detection step adds computation time to the
original algorithm, as was expected. Also, since sample points are added, the resulting meshes
are larger than those produced by the original Marching Cubes.

Figure 4: The additional steps of the extended Marching Cubes. (Kobbelt et al. [2])

5. Surface Reconstruction
 In contrast, when not given a function, but rather a series of unorganized points, the problem
to solve is how to connect these points. Here, the methods of Amenta et al. [1] and Curless and
Levoy [2] are explained. The difference distinguishing the two is that the crust algorithm of
Amenta et al. just assumes a set of points whereas the Curless and Levoy paper assumes a series
of range images taken from different angles of the model.

5.1. Crust Algorithm
 Prior to this paper, a few algorithms concentrated on constructing a model from unorganized
points (Edelsbrunner et al. [3,4], Curless and Levoy [2]). Edelsbrunner et al. used alpha shapes
in one such algorithm. The idea of alpha shapes is a generalization of the convex hull for a series
of points. In R2, given an alpha parameter, a circle is drawn around each vertex and all vertices
whose circles intersect are connected. An intuitive way of thinking of this is to imagine each
vertex to be a rock and the rest of the space to be filled with Styrofoam. Then, with a Styrofoam
eraser of radius alpha, erase as much of the Styrofoam as possible without intersecting any of the
rocks. Vertices adjacent to cavities made by the eraser should be connected to create the alpha
shape. A disadvantage of this method is that the experimental parameter alpha must be
determined. This alpha is constant over the entire surface, thus a model of varying point density
over the surface will not be appropriately shaved down by the algorithm.
 The method of zero sets takes a set of input points and generates an implicit signed distance
function for the space. This distance function passes through the Marching Cubes algorithm to
output a model. An example of this is the Curless and Levoy paper described in section 5.2.
This algorithm, however, produces an approximation of the original set of points, rather than an
interpolation like the proposed crust algorithm.
 Finally, Delaunay sculpting computes the Delaunay triangulation of the set of points and
progressively removes tetrahedra from the polygonization by using an application-defined metric
function to rank the tetrahedra. The crust algorithm and alpha shapes are essentially
enhancements of Delaunay sculpting.

 The algorithm itself starts off by computing the Voronoi diagram of the set of points. For
each sample point, the poles are calculated for each sample point. These poles are then added to
the original set of points and are used to recalculate the Delaunay triangulation. All triangles in
which all three vertices are from the original set of sample points are kept, throwing out all
triangles whose vertices includes a pole. The poles approximate the medial axis, and this
secondary triangulation allows for the medial axis to block triangles from being created across
the inside of the surface.
 Once this triangulation is formed, a normal filtering step deletes all triangles whose normals
differ by a certain threshold from the direction vector between the triangle vertices and the poles.
This case occurs when the model actually contains to components and the previous steps connect
the two components with a thin sheet of triangles. The final step is to assure the model is a
manifold by orienting triangles so they are consistent with their neighbors and to remove sharp
dihedral edges. To estimate the normal at a vertex, a neighborhood of the point is chosen and the
covariance matrix is constructed. The eigenvector of the covariance matrix with the smallest
eigenvalue defines the least-squares optimal plane, which effectively estimates the normal.
 As mentioned before, the advantages of this algorithm over the previous work include no
need for experimental parameters since the triangulations are created adaptively to the curvature
of the surface. Therefore, the crust algorithm does not require a uniform sampling of the mesh,
and the only assumption taken is that the sampling is dense.
 When this algorithm was first introduced, a major assumption that was made was that the
sampling of points was dense. If this assumption is violated, undersampling can result in a hole.
One instance of this happening is by imagining two sheets near each other. If the pole of one of
the vertices of one sheet falls on the other sheet and the undersampling occurs around this pole,
the algorithm assumes the pole means the surface should not be constructed in that region. This
results in a hole. Similarly, at sharp edges, holes can occur. In the case that two sheets are
perpendicular to each other, one of the poles on one of the sheets may be far off the surface, but
when taking the pole on the other side of the surface, it may land on the surface, puncturing a
hole. Lastly, boundaries may cause a few problems, but often if there are no other sample points
around the boundary, these holes will be closed off by the algorithm, which is acceptable.

5.2. Complex Models from Range Images
 A significant difference between the Curless and Levoy [2] and Amenta [1] is that the
Curless and Levoy paper exploits the overall structure of the measured data. In the realm of
range images, work has been done using Venn diagrams that identify overlapping regions and
exploring methods of merging the regions together to form the model (Soucy and Laurendeau
[12]). Another method shaves away repeated geometry regions and stitching up the non-
overlapping regions (Levoy and Turk [10]). Other work includes creating depth maps and using
different weights to create a zero set which is extracted (Grosso et al. [6], Succi et al. [13]).
 The main idea of this algorithm is to generate an implicit function using a weighted average
of the range images. These weights are computed to reflect the uncertainty of the range image
measurement and can often be related to the angle between the surface’s normal and the
direction from the sensor to the surface point. Now that an implicit function has been created, an
isosurface extraction algorithm such as Marching Cubes can be run to output a model. To
enhance the speed of the algorithm, it would logical to move along the volume in the same area
as the range image. To do so, a mapping is created between each voxel scanline and the range
scanline.

 Holes are handled to an extent with this algorithm. Each range image can see a portion of the
model and the space surrounding it. To find out where these holes exist, each voxel can have
one of three states: unseen, empty, or near the surface. The voxel space starts out with all cells
marked as unseen, and as range images are looked at, those voxels near the surface are marked as
so and all cells between the surface and the sensor are marked as empty. The boundary of the
holes can be constructed by extracting the surface between empty and unseen regions.

Figure 5: Using multiple range images to create an average of the surface. Error! Bookmark not

defined.

 The algorithm fails in a few cases, such as sharp corners or thin surfaces. This is due to the
fact that more range images focusing on these corners would be needed to get an accurate
weighting to replicate the sharp edge. Also, the current scanning technology is a limitation of the
robustness of the algorithm, since more complex models would need more scanned images and
crevices in the model will not be picked up easily.

6. Future Work
 When the Marching Cubes algorithm was first published, the fact that there were a few
ambiguities in some of the vertex configurations was not completely known. As this problem
arose, the result was holes in the extracted surface and was solved by Marching Tetrahedra and
adaptive grid refinement algorithms.
 At the time of the extended Marching Cubes algorithm, the use of balanced octrees was
proposed to help maintain a varying degree of refinement in the model. Additionally, changes
were expected to be made to improve the speed of the Marching Cubes algorithm by exploiting
the parallelism of the algorithm.
 To take advantage of the Voronoi-based surface reconstruction, the problems of boundaries
and sharp edges needed to be fixed. This was accomplished by detecting undersampling regions
and adding points to compensate. One of the new research ideas was to use this algorithm for
lossless mesh compression. This would allow for the just the vertices to be stored with no data
on the connectivity. To decompress the vertices into a mesh, the algorithm is run to construct the
surface. Also, the idea of using sample points with the additional information of the normals at
these points will relax the assumption that the sampling is very dense. The idea of co-cones was
introduced that creates a cone aligned with the poles which removes one Voronoi diagram

computation along with the normal trimming step. The power crust has been developed as a
combination of power diagrams and polar balls which approximate the medial axis to separate
the inside and outside of the surface.
 For the creation of complex models from range images, some future directions proposed at
the time of the paper also starts with basic extensions of improving execution time and exploiting
the parallelism of the algorithm. Also, the problem of sharp edges and thin surfaces has been
proposed to be fixed by considering the estimated normals of the surfaces.

7. References

[1] N. Amenta, M. Bern, and M. Kamvysselis. A new Voronoi-based surface
reconstruction algorithm. In Proceedings of SIGGRAPH 98, pp. 415-422, July
1998.

[2] B. Curless and M. Levoy. A volumetric method for building complex models from

range images. In Proceedings of SIGGRAPH 96, PP. 303-312, 1996.

[3] H. Edelsbrunner, D.G. Kirkpatrick, and R. Seidel. On the shape of a set of points in

the plane. IEEE Transactions on Information Theory, pp. 551-559, 1983.

[4] H. Edelsbrunner and E.P. Mücke. Three-dimensional alpha shapes. ACM

Transactions on Graphics, pp. 43-72, 1994.

[5] E. J. Farrell. Color display and interactive interpretation of three-dimensional data.

IBM J. Res. Develop 27, pp 13-19, August 1983.

[6] E. Grosso, G. Sandini, and C. Frigato. Extraction of 3D information and volumetric

uncertainty from multiple stereo images. In Proceedings of the 8th European
Conference on Artificial Intelligence, pp. 683-688, August 1988.

[7] K. H. Hohne and R. Bernstein. Shading 3D images from CT using gray-level

gradients. IEEE Transactions On Medical Imaging MI-5, pp. 45-47, March 1986.

[8] E. Keppel. Approximating complex surfaces by triangulation of contour lines. IBM

J. Res. Develop 19, pp. 2-11, January 1975.

[9] L. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel. Feature sensitive surface

extraction from volume data. In Proceedings of SIGGRARPH 2001, pp. 57-66,
2001

[10] M. Levoy and G. Turk. Zippered polygon meshes from range images. In

Proceedings of SIGGRAPH 94, pp. 311-318, July 1994.

[11] W. Lorensen and H.Cline. Marching Cubes: A high resolution 3D surface

construction algorithm. In Proceedings of SIGGRAPH 87, pp. 163-169, 1987.

[12] M. Soucy and D. Laurendeau. A general surface approach to the integration of a set

of range views. IEEE Transactions on Pattern Analysis and Machine Intelligence,
pp. 344-358, April 1995.

[13] G. Succi, G. Sandini, E. Grosso, and M. Tistarelli. 3D feature extraction from

sequences of range data. In Robotics Research, Fifth International Symposium, pp.
117-127, August 1990.

