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1.  Introduction 
 There are numerous ways to scan in a model: Magnetic Resonance Imaging (MRI), 
Computed Tomography (CT), laser range scanners, and Positron Emission Tomography (PET) 
are just a few examples.  With these scans come large amounts of data that represent the model 
of interest.  Consequently, this data can be a mix of unorganized points with no explicit 
information on connectivity or a series of images with coloring to represent different tissue in the 
human body.  With this data, the question at hand is how to connect this data together to 
reconstruct the original model. 
 The difference between isosurface extraction and surface reconstruction was hinted above.  
For MRI, CT, and PET scans, a series of slices are created, each of which are coded by varying 
color or grayscale values.  Each of these values represent layers of a function, which, when 
combined, creates a grid of isosurface values that are essentially a discretization of a scalar field, 
F(x,y,z).  The goal of isosurface extraction is to extract the surface representing all points in this 
scalar field where F(x,y,z) = c, where c is the desired isosurface contour constant.  In contrast, 
laser scanners measure the distance from the scanner to wherever the laser strikes the surface, 
resulting in a series of points that rest on the surface.  Surface reconstruction deals with building 
faces from these unconnected vertices to recreate the scanned model. 
 
2.  Desired Algorithm Properties 
 As more and more research is conducted, algorithms have begun to develop a series of 
desirable properties.  Curless and Levoy  [2] outline one such list for mesh producing algorithms 
to possess.  Though these were outlined in the context of surface reconstruction, many of them 
apply to isosurface extraction as well: 

- Time and space efficiency:  An algorithm lacking this quality makes it impractical to 
use in the field and only valid to discuss in theory. 

- Robustness: Algorithms not handling special cases will also be unusable.   
- Limited assumptions:  Assumptions take away from the robustness of an algorithm; 

however, some may be unavoidable for the proposed algorithms.  Assumptions about 
the geometry’s topology can lead to significant shortcomings. 

 
3. Definitions 
 Given a surface, there are a number of scalar functions that can represent the surface.  The 
requirement of the function, f, is that f(x,y,z) = 0 for any point on the surface.  For points off of 
the surface, there are no restrictions.  One such function is a scalar distance field in which the 
value at a given point is the distance to the closest point on the surface.  A directed distance 
field, as defined by Kobbelt et al. [9], stores the distance to the surface along each of the 
coordinate axes. 
 Given a set of vertices, V, the Voronoi cell of a vertex, vi, is the region of space where all 
points in that region are closer to vi than any of the other vertices in V.  A Voronoi diagram 
(figure 1) is the partitioning of a space containing V into these cells.  A Voronoi vertex in Rd is a 



point that is equidistant to d+1 sample points.  These Voronoi vertices can be located in the 
Voronoi diagrams where two Voronoi cell boundaries intersect. 

Figure 1:  A Voronoi diagram (left) and its triangulation with the Voronoi vertices (right)  
Amenta et al. [4] 

 The dual of the Voronoi diagram is the Delaunay triangulation.  A way of finding the 
Delaunay triangulation is triangulating the vertices such that the circumcircle of all triangles do 
not contain any other vertices.  This accomplishes minimizing the maximum internal angle of all 
the triangles and results in a “nice” triangulation.  Another nice property is that the boundary of 
the triangulation is the convex hull of the vertices.  One way to find the triangulation in R2 is to 
project (x,y) to the paraboloid x2 + y2, find the convex hull of the projection, and project it back 
down to the plane. 
 The medial axis is the set of points that is the closest point to more than two points on the 
surface.  In two dimensions, the medial axis can be approximated by the Voronoi vertices, 
however this extension cannot be made so easily to three dimensions.  For this, we introduce the 
idea of poles, which are the two boundary vertices of a Voronoi cell that are farthest from the 
point the cell is built around.  These poles are usually on opposite sides of the surface, though 
some special cases of the crust algorithm may not enforce this requirement.  These poles 
approximated the medial axis in three dimensions. 
 
4. Isosurface Extraction 
 Given a scalar field function, f(x,y,z), the goal of isosurface extraction is to create a mesh 
representing a contour surface f(x,y,z) = c.  The Marching Cubes algorithm (Lorensen and Cline 
[11]) provides one solution to this problem that offers a few new features over previous 
algorithms. 
 
4.1.  Previous Work 
 Keppel [8] started on the contour surface and progressively connected triangles on the 
surface between adjacent slices.  However, an isosurface with more than one component would 
cause ambiguities for connecting contours.  Farrel [5] and Hohne and Bernstein [7] used ray 
casting to find the surface and shading it with hue gradients or grayscales.  A disadvantage of 
these ray casting algorithms is that they result in approximate shading with an unnormalized 
gradient. 
 
4.2.  Marching Cubes  



 The Marching Cubes algorithm partitions the space containing the scalar field into cubes.  
For a given scalar value, c, each vertex in the voxel grid is assigned a value of 1 if it is greater 
than or equal to the value and 0 otherwise.  This creates 28 possible polygonizations of the cube, 
which can be reduced using rotational symmetry and swapping inside and outside vertices to 
reduce it down to 15 cases, which can be seen in Figure 2.  A lookup table is created, which can 
be indexed by creating an 8 bit index from each vertex of the cube whose entry in the table 
points to the polygonization. 

Figure 2:  The 15 possible combinations.  http://www.exaflop.org/docs/marchcubes/ind.html 

 The normal at a surface point can be calculated by estimating the gradient of the scalar field 
function at that point.  To estimate the gradient of a point within a cube, the gradient at each 
vertex of the cube is estimated by taking central differences of the scalar field: 
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 These central differences create a unit normal vector at each of the cube’s vertices, which can 
then be interpolated to the surface point of concern within the cube. 
 Some initial enhancements were proposed in Lorensen and Kline [11] to speed up the 
original algorithm.  One of these is to take advantage of the spatial coherence by reusing the 
values from adjacent cubes.  By doing this, for all cubes other than those on the boundary, only 
three of the edges need to calculate the position along the edge where the surface intersects it.  
This provides a speedup factor of 3.  Also, the ability to create CSG objects with Marching 



Cubes was added by allowing Boolean operations and creating a truth table to see if a triangle 
should appear in the cube being evaluated. 
 The Marching Cubes algorithm produces some artifacts when generating a mesh.  Some 
aliasing occurs at sharp edges on the model.  This occurs because the algorithm encloses a cube 
around the sharp edge and no matter how fine the cube size is, the edge or corner is still sharp in 
the cube.  The implication of this is that the normal on the surface in the cube does not converge 
to the surface’s normal, which does happen for smoother portions of the surface, unless the grid 
happens to line up directly with one of the sharp edge’s faces.  Also, with the original algorithm, 
a uniform sampling is done so that there is a uniform distribution across the surface despite 
varying levels of detail on the surface.  Additionally, this causes a uniform aliasing that vaguely 
represents the grid’s cubic structure.  These have all been topics of research in other papers, such 
as in the extended Marching Cubes algorithm explained in section 4.3. 
 
4.3.  Extended Marching Cubes  
 In the original Marching Cubes algorithm, sharp edges create undesirable artifacts.  In 
Kobbelt et al [9], additional vertices are added to account for these sharp features. 
 To accomplish this, a couple modifications were made to the original algorithm.  Instead of 
using the scalar distance field, the directed distance field, as defined in section 3, obtains more 
information than if the algorithm were to just interpolate the scalar values.  As seen in figure 3, 
using the scalar distance field does not give information of the direction to the surface, and a 
linear interpolation of the values results in an errant estimation of the intersection point of the 
surface with the edge.  Instead, the directed distance field actually provides the exact intersection 
point with the gird axis.  Another modification is a feature detection algorithm that adds vertices 
to the mesh to bring out these features. 
 For the algorithm itself, the addition occurs when using the local information of the directed 
distance field.  A feature detection algorithm is used that compares the normals of neighboring 
surfaces of a cell, and if the angle of the cone spanned by these normals is greater than some 
threshold, then we tag the cube to have a feature.  Once this detection has been made, the 
normals at these points are used to find an intersection between the tangent planes along the 
surface in the given cube instead of directly connecting the edge intersection points.  This 
intersection creates a new sampling point which results in an increased convergence rate 
compared to just a normal linear interpolation between edge intersections.  To further 
differentiate features, the maximum deviation of the normals from each other is calculated, and a 
threshold is used to differentiate between edges and corners.  A final step flips edges between 
adjacent cells with features present.  An assumption made in this algorithm is that there is at 
most one sharp feature in each cell.  With this assumption, these sharp features can be assumed 
to be connected between adjacent feature cells, and thus this edge flipping creates the desired 
edge or corner. 

Figure 3:  Computing the intersection location of the surface with the cell edges.  The left 
figure shows uses scalar distance fields, and the right uses directed distance fields. 

(Kobbelt et al. [2] 



 The advantages of this algorithm over the original one are straightforward.  It was designed 
for feature detection, thus sharp edges and corners can finally be handled adequately.  Also, the 
use of directed distance fields provides the algorithm with much more information without much 
additional computational cost.  However, the feature detection step adds computation time to the 
original algorithm, as was expected.  Also, since sample points are added, the resulting meshes 
are larger than those produced by the original Marching Cubes. 

Figure 4:  The additional steps of the extended Marching Cubes.  (Kobbelt et al. [2])

 
5.  Surface Reconstruction 
 In contrast, when not given a function, but rather a series of unorganized points, the problem 
to solve is how to connect these points.  Here, the methods of Amenta et al. [1] and Curless and 
Levoy [2] are explained.  The difference distinguishing the two is that the crust algorithm of 
Amenta et al. just assumes a set of points whereas the Curless and Levoy paper assumes a series 
of range images taken from different angles of the model. 

 
5.1.  Crust Algorithm 
 Prior to this paper, a few algorithms concentrated on constructing a model from unorganized 
points (Edelsbrunner et al. [3,4], Curless and Levoy [2]).  Edelsbrunner et al. used alpha shapes 
in one such algorithm.  The idea of alpha shapes is a generalization of the convex hull for a series 
of points.  In R2, given an alpha parameter, a circle is drawn around each vertex and all vertices 
whose circles intersect are connected.  An intuitive way of thinking of this is to imagine each 
vertex to be a rock and the rest of the space to be filled with Styrofoam.  Then, with a Styrofoam 
eraser of radius alpha, erase as much of the Styrofoam as possible without intersecting any of the 
rocks.  Vertices adjacent to cavities made by the eraser should be connected to create the alpha 
shape.  A disadvantage of this method is that the experimental parameter alpha must be 
determined.  This alpha is constant over the entire surface, thus a model of varying point density 
over the surface will not be appropriately shaved down by the algorithm. 
 The method of zero sets takes a set of input points and generates an implicit signed distance 
function for the space.  This distance function passes through the Marching Cubes algorithm to 
output a model.  An example of this is the Curless and Levoy paper described in section 5.2.  
This algorithm, however, produces an approximation of the original set of points, rather than an 
interpolation like the proposed crust algorithm. 
 Finally, Delaunay sculpting computes the Delaunay triangulation of the set of points and 
progressively removes tetrahedra from the polygonization by using an application-defined metric 
function to rank the tetrahedra.  The crust algorithm and alpha shapes are essentially 
enhancements of Delaunay sculpting. 



 The algorithm itself starts off by computing the Voronoi diagram of the set of points.  For 
each sample point, the poles are calculated for each sample point.  These poles are then added to 
the original set of points and are used to recalculate the Delaunay triangulation.  All triangles in 
which all three vertices are from the original set of sample points are kept, throwing out all 
triangles whose vertices includes a pole.  The poles approximate the medial axis, and this 
secondary triangulation allows for the medial axis to block triangles from being created across 
the inside of the surface. 
 Once this triangulation is formed, a normal filtering step deletes all triangles whose normals 
differ by a certain threshold from the direction vector between the triangle vertices and the poles.  
This case occurs when the model actually contains to components and the previous steps connect 
the two components with a thin sheet of triangles.  The final step is to assure the model is a 
manifold by orienting triangles so they are consistent with their neighbors and to remove sharp 
dihedral edges.  To estimate the normal at a vertex, a neighborhood of the point is chosen and the 
covariance matrix is constructed.  The eigenvector of the covariance matrix with the smallest 
eigenvalue defines the least-squares optimal plane, which effectively estimates the normal. 
 As mentioned before, the advantages of this algorithm over the previous work include no 
need for experimental parameters since the triangulations are created adaptively to the curvature 
of the surface.  Therefore, the crust algorithm does not require a uniform sampling of the mesh, 
and the only assumption taken is that the sampling is dense. 
 When this algorithm was first introduced, a major assumption that was made was that the 
sampling of points was dense.  If this assumption is violated, undersampling can result in a hole.  
One instance of this happening is by imagining two sheets near each other.  If the pole of one of 
the vertices of one sheet falls on the other sheet and the undersampling occurs around this pole, 
the algorithm assumes the pole means the surface should not be constructed in that region.  This 
results in a hole.  Similarly, at sharp edges, holes can occur.  In the case that two sheets are 
perpendicular to each other, one of the poles on one of the sheets may be far off the surface, but 
when taking the pole on the other side of the surface, it may land on the surface, puncturing a 
hole.  Lastly, boundaries may cause a few problems, but often if there are no other sample points 
around the boundary, these holes will be closed off by the algorithm, which is acceptable. 
 
5.2.  Complex Models from Range Images 
 A significant difference between the Curless and Levoy [2] and Amenta [1] is that the 
Curless and Levoy paper exploits the overall structure of the measured data.  In the realm of 
range images, work has been done using Venn diagrams that identify overlapping regions and 
exploring methods of merging the regions together to form the model (Soucy and Laurendeau 
[12]).  Another method shaves away repeated geometry regions and stitching up the non-
overlapping regions (Levoy and Turk [10]).  Other work includes creating depth maps and using 
different weights to create a zero set which is extracted (Grosso et al. [6], Succi et al. [13]). 
 The main idea of this algorithm is to generate an implicit function using a weighted average 
of the range images.  These weights are computed to reflect the uncertainty of the range image 
measurement and can often be related to the angle between the surface’s normal and the 
direction from the sensor to the surface point.  Now that an implicit function has been created, an 
isosurface extraction algorithm such as Marching Cubes can be run to output a model.  To 
enhance the speed of the algorithm, it would logical to move along the volume in the same area 
as the range image.  To do so, a mapping is created between each voxel scanline and the range 
scanline.   



 Holes are handled to an extent with this algorithm.  Each range image can see a portion of the 
model and the space surrounding it.  To find out where these holes exist, each voxel can have 
one of three states: unseen, empty, or near the surface.  The voxel space starts out with all cells 
marked as unseen, and as range images are looked at, those voxels near the surface are marked as 
so and all cells between the surface and the sensor are marked as empty.  The boundary of the 
holes can be constructed by extracting the surface between empty and unseen regions. 

Figure 5:  Using multiple range images to create an average of the surface. Error! Bookmark not 

defined.

 The algorithm fails in a few cases, such as sharp corners or thin surfaces.  This is due to the 
fact that more range images focusing on these corners would be needed to get an accurate 
weighting to replicate the sharp edge.  Also, the current scanning technology is a limitation of the 
robustness of the algorithm, since more complex models would need more scanned images and 
crevices in the model will not be picked up easily. 
 
6.  Future Work 
 When the Marching Cubes algorithm was first published, the fact that there were a few 
ambiguities in some of the vertex configurations was not completely known.  As this problem 
arose, the result was holes in the extracted surface and was solved by Marching Tetrahedra and 
adaptive grid refinement algorithms. 
 At the time of the extended Marching Cubes algorithm, the use of balanced octrees was 
proposed to help maintain a varying degree of refinement in the model.  Additionally, changes 
were expected to be made to improve the speed of the Marching Cubes algorithm by exploiting 
the parallelism of the algorithm. 
 To take advantage of the Voronoi-based surface reconstruction, the problems of boundaries 
and sharp edges needed to be fixed.  This was accomplished by detecting undersampling regions 
and adding points to compensate.  One of the new research ideas was to use this algorithm for 
lossless mesh compression.  This would allow for the just the vertices to be stored with no data 
on the connectivity.  To decompress the vertices into a mesh, the algorithm is run to construct the 
surface.  Also, the idea of using sample points with the additional information of the normals at 
these points will relax the assumption that the sampling is very dense.  The idea of co-cones was 
introduced that creates a cone aligned with the poles which removes one Voronoi diagram 



computation along with the normal trimming step.  The power crust has been developed as a 
combination of power diagrams and polar balls which approximate the medial axis to separate 
the inside and outside of the surface. 
 For the creation of complex models from range images, some future directions proposed at 
the time of the paper also starts with basic extensions of improving execution time and exploiting 
the parallelism of the algorithm.  Also, the problem of sharp edges and thin surfaces has been 
proposed to be fixed by considering the estimated normals of the surfaces. 
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