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The Basic Idea
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Vertex Decimation: [Schroeder92]

® C(Classify vertices as simple, complex,
boundary, interior edge, or corner
vertex.

® |teratively remove vertices that
meet some decimation criteria.

® Triangulate resulting holes.

Restricted to manifold surfaces.
Carefully preserves topology.




Vertex Clustering: [Rossignac92]

® Weight vertices based on
perceptual importance.

® Create bounding box and subdivide
into grid.

® Perform weighted clustering of
vertices in each cell.

Very fast.

Works on non-manifold geometry.

May drastically alter topology.

Visually unappealing.

Difficult to produce models with N faces.




Iterative Edge Contraction: [Hoppe96] (and others)

® Define the cost of contracting an
edge.

® |teratively contract the edge with
lowest cost.




The Solution:

Iterative Pair Contraction
with the Quadric Error Metric

Works on non-manifold geometry
Supports aggregation
Can be implemented efficiently

Produces high quality approximations



Iterative Pair Contraction

A pair of vertices (v1,V2) are valid for contraction if:

|. (V1,V2) is an edge, or

2. ||vi — v2|| <t for some threshold t
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Benefits of Pair Contraction

® Can join unconnected components

® Can result in much nicer approximations



Error Metric

[Ronfard96] suggested the following:

® Each vertex is the intersection of a set of planes.

® Define the error at a vertex to be the sum of the
squared distances to its planes.

A(v) = A(lvg vy v, 1]T) = Z (PTV)2

pEplanes(v)

Where p = [a b c d]” represents the plane az + by + cz +d = 0
with a® +b° +c* = 1



Error Metric (2)
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Error Metric (3)

A(v) =v! Z (pp") | v
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K is the fundamental error quadric.



Error Metric (4)

® For each vertex vj store a symmetric 4x4 matrix Q;.
® For a given contraction (V1,V2) — V,letQ = Q; + Q.

® The matrices (); are called quadrics because the level sets
of A(v) = € form quadric surfaces (usually ellipsoids).
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More on Quadrics
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More on Quadrics (2)
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Performing Contractions

To perform a contraction (V1,V2) — V, we must find V.
Specifically, we want V(A(v)) = 0.
V(A(¥)) = 2Xv + 2y

IXV 42y =0 — v=-—X"1y

The associated minimum error is:

AV) =y v+z=—-y ' X ly+2



Algorithm Summary

Compute initial quadrics for each vertex.
Select all valid pairs.

Compute the optimal contraction target for each pair and
let its associated error be the cost of the contraction.

Place all pairs in a keyed heap on cost with the minimum
cost pair at the top.

Iteratively remove the pair with least cost from the heap,
contract the pair, and update the cost of all valid pairs
involving this contracted vertex.



Additional Details
1
‘ |

® As proposed in the paper, the algorithm is
very sensitive to tessellation.

® |n practice, weight each quadric according to
area as in [Garland99].



Additional Details (2)

® VWhen we wish to preserve boundaries, we can
create perpendicular planes to boundary edges.

® Then, weight the associated fundamental quadrics

appropriately to penalize movement away from the
boundary.



Additional Details (3)
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® Contractions may invert the mesh.

® The paper proposes penalizing contractions where
the normal of a face changes by more than some
threshold value.

® A better solution is described in [Garland99], which
defines the region the contracted vertex may occupy
without causing foldover.



Additional Details (4)

® Computing inverses is bad: use Cholesky decomposition
(since X is positive semidefinite, by construction).

® What if Xis singular?
® Can use SVD to project vertex onto the solution space.

® |n practice, look along line between source vertices or
just pick whichever source vertex minimizes the error.



Additional Details (5)
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More on Stability: [JuO2]

Evaluating A(v)as proposed not stable with floats.

Compute a sequence of givens rotations G s.t.:

X y
0 7
0 0

RO O 8
RO 8 8
RS 8 R
_— s =R S



Results

424,376 60,000 8,000



Results




Variational Shape Approximation: [Cohen-Steiner04]

® Formulate surface
simplification as an
optimization problem.

® Use clustering to fit local
shape proxies to surface.

® Use these proxies to
produce approximating
surfaces.

Better approximation than QER.
Much slower than QER.
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