
Michael Garland and Paul S. Heckbert

Presented by Jerry O. Talton III

Surface Simplification Using
Quadric Error Metrics

The Basic Idea

Figure 8: Original bunny model with 69,451 triangles. Rendered
using flat shading just as in approximations below.

Figure 9: An approximation using only 1,000 triangles (generated
in 15 seconds).

Figure 10: An approximation using only 100 triangles (generated in
15 seconds).

Figure 11: 1,000 face approximation. Error ellipsoids for each ver-
tex are shown in green.

Figure 12: Terrain model of Crater Lake (199,114 faces).

Figure 13: Simplified model with 999 faces (took 46 seconds).

Figure 8: Original bunny model with 69,451 triangles. Rendered
using flat shading just as in approximations below.

Figure 9: An approximation using only 1,000 triangles (generated
in 15 seconds).

Figure 10: An approximation using only 100 triangles (generated in
15 seconds).

Figure 11: 1,000 face approximation. Error ellipsoids for each ver-
tex are shown in green.

Figure 12: Terrain model of Crater Lake (199,114 faces).

Figure 13: Simplified model with 999 faces (took 46 seconds).

Vertex Decimation: [Schroeder92]

• Classify vertices as simple, complex,
boundary, interior edge, or corner
vertex.

• Iteratively remove vertices that
meet some decimation criteria.

• Triangulate resulting holes.

Computer Graphics, 26, 2, July 1992
Computer Graphics, 26, 2, July 1992

Restricted to manifold surfaces.
Carefully preserves topology.

Vertex Clustering: [Rossignac92]

• Weight vertices based on
perceptual importance.

• Create bounding box and subdivide
into grid.

• Perform weighted clustering of
vertices in each cell.

Very fast.
Works on non-manifold geometry.
May drastically alter topology.
Visually unappealing.
Difficult to produce models with N faces.

Iterative Edge Contraction: [Hoppe96] (and others)

• Define the cost of contracting an
edge.

• Iteratively contract the edge with
lowest cost.

High quality results.
Cost functions can be complex.
Can close holes.
Can’t join disconnected components.

The Solution:

• Works on non-manifold geometry

• Supports aggregation

• Can be implemented efficiently

• Produces high quality approximations

Iterative Pair Contraction
with the Quadric Error Metric

Iterative Pair Contraction

A pair of vertices are valid for contraction if:

1. is an edge, or

2. for some threshold

(v1,v2)

(v1,v2)

||v1 − v2|| < t t

Before After

contract

v
1

v
2

v

Figure 1: Edge contraction. The highlighted edge is contracted
into a single point. The shaded triangles become degenerate and are
removed during the contraction.

ing attention. Several different algorithms have been formulated for
simplifying surfaces. Those algorithms which are most relevant to
our work can be broadly categorized into 3 classes:

Vertex Decimation. Schroeder et al. [9] describe an algorithm
which we would term vertex decimation. Their method iteratively
selects a vertex for removal, removes all adjacent faces, and retri-
angulates the resulting hole. Soucy and Laurendeau [10] described
a more sophisticated, but essentially similar algorithm. While they
provide reasonable efficiency and quality, these methods are not re-
ally suited for our purpose. Both methods use vertex classification
and retriangulation schemes which are inherently limited to mani-
fold surfaces, and they carefully maintain the topology of the model.
While these are important features in some domains, they are restric-
tions for multiresolution rendering systems.

Vertex Clustering. The algorithm described by Rossignac and
Borrel [8] is one of the few capable of processing arbitrary polygo-
nal input. A bounding box is placed around the original model and
divided into a grid. Within each cell, the cell’s vertices are clustered
together into a single vertex, and the model faces are updated ac-
cordingly. This process can be very fast, and can make drastic topo-
logical alterations to the model. However, while the size of the grid
cells does provide a geometric error bound, the quality of the out-
put is often quite low. In addition, it is difficult to construct an ap-
proximation with a specific face count, since the number of faces
is only indirectly determined by the specified grid dimensions. The
exact approximation produced is also dependent on the exact posi-
tion and orientation of the original model with respect to the sur-
rounding grid. This uniformmethod can easily be generalized to use
an adaptive grid structure, such as an octree [6]. This can improve
the simplification results, but it still does not support the quality and
control that we desire.

Iterative Edge Contraction. Several algorithms have been
published that simplify models by iteratively contracting edges (see
Figure 1). The essential difference between these algorithms lies in
how they choose an edge to contract. Some notable examples of
such algorithms are those of Hoppe [4, 3], Ronfard and Rossignac
[7], and Guéziec [2]. These algorithms all seem to have been de-
signed for use on manifold surfaces, although edge contractions can
be utilized on non-manifold surfaces. By performing successive
edge contractions, they can close holes in the object but they can-
not join unconnected regions.

If it is critical that the approximate model lie within some dis-
tance of the original model and that its topology remain unchanged,
the simplification envelopes technique of Cohen et al. [1] can be
used in conjunction with one of the above simplification algorithms.
As long as any modification made to the model is restricted to lie
within the envelopes, a global error guarantee can be maintained.
However, while this provides strong error limits, the method is in-
herently limited to orientable manifold surfaces and carefully pre-

contract

Before After

v
1

v
2 v

Figure 2: Non-edge contraction. When non-edge pairs are con-
tracted, unconnected sections of the model are joined. The dashed
line indicates the two vertices being contracted together.

serves model topology. Again, these are often limitations for the
purposes of simplification for rendering.

None of these previously developed algorithms provide the com-
bination of efficiency, quality, and generality that we desire. Vertex
decimation algorithms are unsuitable for our needs; they are careful
to maintain model topology and usually assumemanifold geometry.
Vertex clustering algorithms are very general and can be very fast.
However, they provide poor control over their results and these re-
sults can be of rather low quality. Edge contraction algorithms can
not support aggregation.

We have developed an algorithm which supports both aggrega-
tion and high quality approximations. It possesses much of the gen-
erality of vertex clustering as well as the quality and control of itera-
tive contraction algorithms. It also allows faster simplification than
some higher quality methods [3].

3 Decimation via Pair Contraction

Our simplification algorithm is based on the iterative contraction of
vertex pairs; a generalization of the iterative edge contraction tech-
nique used in previous work. A pair contraction, which we will
write (v1,v2) → v̄, moves the vertices v1 and v2 to the new posi-
tion v̄, connects all their incident edges to v1, and deletes the vertex
v2. Subsequently, any edges or faces which have become degenerate
are removed. The effect of a contraction is small and highly local-
ized. If (v1,v2) is an edge, then 1 or more faces will be removed
(see Figure 1). Otherwise, two previously separate sections of the
model will be joined at v̄ (see Figure 2).

This notion of contraction is in fact quite general; we can con-
tract a set of vertices into a single vertex: (v1,v2, . . . ,vk) → v̄. This
form of generalized contraction can express both pair contractions
as well as more general operations such as vertex clustering. How-
ever, we use pair contraction as the atomic operation of our algo-
rithm because it is the most fine-grained contraction operation.

Startingwith the initialmodel Mn, a sequence of pair contractions
is applied until the simplification goals are satisfied and a final ap-
proximation Mg is produced. Because each contraction corresponds
to a local incremental modification of the current model, the algo-
rithm actually generates a sequence of models Mn,Mn−1, . . . ,Mg.
Thus, a single run can produce a large number of approximate mod-
els or a multiresolution representation such as a progressive mesh
[3].

3.1 Aggregation

The primary benefit which we gain by utilizing general vertex pair
contractions is the ability of the algorithm to join previously uncon-
nected regions of the model together. A potential side benefit is that
it makes the algorithm less sensitive to the mesh connectivity of the
original model. If in fact two faces meet at a vertex which is dupli-
cated, the contraction of that pair of vertices will repair this short-
coming of the initial mesh.

Before After

contract

v
1

v
2

v

Figure 1: Edge contraction. The highlighted edge is contracted
into a single point. The shaded triangles become degenerate and are
removed during the contraction.

ing attention. Several different algorithms have been formulated for
simplifying surfaces. Those algorithms which are most relevant to
our work can be broadly categorized into 3 classes:

Vertex Decimation. Schroeder et al. [9] describe an algorithm
which we would term vertex decimation. Their method iteratively
selects a vertex for removal, removes all adjacent faces, and retri-
angulates the resulting hole. Soucy and Laurendeau [10] described
a more sophisticated, but essentially similar algorithm. While they
provide reasonable efficiency and quality, these methods are not re-
ally suited for our purpose. Both methods use vertex classification
and retriangulation schemes which are inherently limited to mani-
fold surfaces, and they carefully maintain the topology of the model.
While these are important features in some domains, they are restric-
tions for multiresolution rendering systems.

Vertex Clustering. The algorithm described by Rossignac and
Borrel [8] is one of the few capable of processing arbitrary polygo-
nal input. A bounding box is placed around the original model and
divided into a grid. Within each cell, the cell’s vertices are clustered
together into a single vertex, and the model faces are updated ac-
cordingly. This process can be very fast, and can make drastic topo-
logical alterations to the model. However, while the size of the grid
cells does provide a geometric error bound, the quality of the out-
put is often quite low. In addition, it is difficult to construct an ap-
proximation with a specific face count, since the number of faces
is only indirectly determined by the specified grid dimensions. The
exact approximation produced is also dependent on the exact posi-
tion and orientation of the original model with respect to the sur-
rounding grid. This uniformmethod can easily be generalized to use
an adaptive grid structure, such as an octree [6]. This can improve
the simplification results, but it still does not support the quality and
control that we desire.

Iterative Edge Contraction. Several algorithms have been
published that simplify models by iteratively contracting edges (see
Figure 1). The essential difference between these algorithms lies in
how they choose an edge to contract. Some notable examples of
such algorithms are those of Hoppe [4, 3], Ronfard and Rossignac
[7], and Guéziec [2]. These algorithms all seem to have been de-
signed for use on manifold surfaces, although edge contractions can
be utilized on non-manifold surfaces. By performing successive
edge contractions, they can close holes in the object but they can-
not join unconnected regions.

If it is critical that the approximate model lie within some dis-
tance of the original model and that its topology remain unchanged,
the simplification envelopes technique of Cohen et al. [1] can be
used in conjunction with one of the above simplification algorithms.
As long as any modification made to the model is restricted to lie
within the envelopes, a global error guarantee can be maintained.
However, while this provides strong error limits, the method is in-
herently limited to orientable manifold surfaces and carefully pre-

contract

Before After

v
1

v
2 v

Figure 2: Non-edge contraction. When non-edge pairs are con-
tracted, unconnected sections of the model are joined. The dashed
line indicates the two vertices being contracted together.

serves model topology. Again, these are often limitations for the
purposes of simplification for rendering.

None of these previously developed algorithms provide the com-
bination of efficiency, quality, and generality that we desire. Vertex
decimation algorithms are unsuitable for our needs; they are careful
to maintain model topology and usually assumemanifold geometry.
Vertex clustering algorithms are very general and can be very fast.
However, they provide poor control over their results and these re-
sults can be of rather low quality. Edge contraction algorithms can
not support aggregation.

We have developed an algorithm which supports both aggrega-
tion and high quality approximations. It possesses much of the gen-
erality of vertex clustering as well as the quality and control of itera-
tive contraction algorithms. It also allows faster simplification than
some higher quality methods [3].

3 Decimation via Pair Contraction

Our simplification algorithm is based on the iterative contraction of
vertex pairs; a generalization of the iterative edge contraction tech-
nique used in previous work. A pair contraction, which we will
write (v1,v2) → v̄, moves the vertices v1 and v2 to the new posi-
tion v̄, connects all their incident edges to v1, and deletes the vertex
v2. Subsequently, any edges or faces which have become degenerate
are removed. The effect of a contraction is small and highly local-
ized. If (v1,v2) is an edge, then 1 or more faces will be removed
(see Figure 1). Otherwise, two previously separate sections of the
model will be joined at v̄ (see Figure 2).

This notion of contraction is in fact quite general; we can con-
tract a set of vertices into a single vertex: (v1,v2, . . . ,vk) → v̄. This
form of generalized contraction can express both pair contractions
as well as more general operations such as vertex clustering. How-
ever, we use pair contraction as the atomic operation of our algo-
rithm because it is the most fine-grained contraction operation.

Startingwith the initialmodel Mn, a sequence of pair contractions
is applied until the simplification goals are satisfied and a final ap-
proximation Mg is produced. Because each contraction corresponds
to a local incremental modification of the current model, the algo-
rithm actually generates a sequence of models Mn,Mn−1, . . . ,Mg.
Thus, a single run can produce a large number of approximate mod-
els or a multiresolution representation such as a progressive mesh
[3].

3.1 Aggregation

The primary benefit which we gain by utilizing general vertex pair
contractions is the ability of the algorithm to join previously uncon-
nected regions of the model together. A potential side benefit is that
it makes the algorithm less sensitive to the mesh connectivity of the
original model. If in fact two faces meet at a vertex which is dupli-
cated, the contraction of that pair of vertices will repair this short-
coming of the initial mesh.

Benefits of Pair Contraction

Figure 3: On the left is a regular grid of 100 closely spaced cubes.
In the middle, an approximation built using only edge contractions
demonstrates unacceptable fragmentation. On the right, the result
of using more general pair contractions to achieve aggregation is an
approximation much closer to the original.

In some applications, such as rendering, topology may be less im-
portant than overall shape. Consider a shape such as that shown in
Figure 3 which is made up of 100 closely spaced cubes in a regu-
lar grid. Suppose we wanted to construct an approximation of the
model on the left for rendering at a distance. Algorithms based on
edge contraction can close holes in objects, but they can never join
disconnected components. In an algorithm using only edge con-
traction, the individual components are individually simplified into
nothing, as in the model in the middle. Using pair contraction, the
individual components can be merged into a single object, as in the
model on the right. The result is a much more faithful approxima-
tion.
Allowing aggregation also requires us to support non-manifold

surfaces. At the instant when two separate regions are joined, a non-
manifold region is quite likely to be created. It would require a great
deal of care and effort to ensure that a contraction never created a
non-manifold region without severely limiting the kinds of contrac-
tions that we could perform.

3.2 Pair Selection

We have chosen to select the set of valid pairs at initialization time,
and to consider only these pairs during the course of the algorithm.
Our decision is based on the assumption that, in a good approxima-
tion, points do not move far from their original positions.
We will say that a pair (v1,v2) is a valid pair for contraction if

either:

1. (v1,v2) is an edge, or

2. ‖v1 − v2‖ < t, where t is a threshold parameter

Using a threshold of t = 0 gives a simple edge contraction algo-
rithm. Higher thresholds allow non-connected vertices to be paired.
Naturally, this threshold must be chosen with some care; if it is too
high, widely separated portions of the model could be connected,
which is presumably undesirable, and it could create O(n2) pairs.
We must track the set of valid pairs during the course of iterative

contraction. With each vertex, we associate the set of pairs of which
it is a member. When we perform the contraction (v1,v2) → v̄,
not only does v1 acquire all the edges that were linked to v2, it also
merges the set of pairs from v2 into its own set. Every occurrence of
v2 in a valid pair is replaced by v1, and duplicate pairs are removed.

4 Approximating Error With Quadrics

In order to select a contraction to perform during a given iteration,
we need some notion of the cost of a contraction. To define this cost,
we attempt to characterize the error at each vertex. To do this, we
associate a symmetric 4×4matrixQwith each vertex, and we define
the error at vertex v= [vx vy vz 1]

T to be the quadratic form!(v) =

v
TQv. In Section 5, we will describe how the initial matrices are
constructed. Note that the level surface !(v) = ε, which is the set
of all points whose error with respect toQ is ε, is a quadric surface.

For a given contraction (v1,v2) → v̄, we must derive a new ma-

trix Q̄which approximates the error at v̄. We have chosen to use the

simple additive rule Q̄ = Q1 +Q2.
In order to perform the contraction (v1,v2) → v̄, we must also

choose a position for v̄. A simple scheme would be to select either
v1, v2, or (v1 + v2)/2 depending on which one of these produces
the lowest value of !(v̄). However, it would be nice to find a po-
sition for v̄ which minimizes !(v̄). Since the error function ! is
quadratic, finding its minimum is a linear problem. Thus, we find
v̄ by solving ∂!/∂x = ∂!/∂y = ∂!/∂z = 0. This is equivalent2 to
solving: q11 q12 q13 q14

q12 q22 q23 q24
q13 q23 q33 q34
0 0 0 1

v̄ =

 0
0
0
1

for v̄. The bottom row of the matrix is empty because v̄ is an homo-
geneous vector — its w component is always 1. Assuming that this
matrix is invertible, we get that

v̄ =

 q11 q12 q13 q14
q12 q22 q23 q24
q13 q23 q33 q34
0 0 0 1

−1 0

0
0
1

 (1)

If this matrix is not invertible, we attempt to find the optimal vertex
along the segment v1v2. If this also fails, we fall back on choosing
v̄ from amongst the endpoints and the midpoint.

4.1 Algorithm Summary

Our simplification algorithm is built around pair contractions and
error quadrics. The current implementation represents models us-
ing an adjacency graph structure: vertices, edges, and faces are all
explicitly represented and linked together. To track the set of valid
pairs, each vertex maintains a list of the pairs of which it is a mem-
ber. The algorithm itself can be quickly summarized as follows:

1. Compute the Q matrices for all the initial vertices.

2. Select all valid pairs.

3. Compute the optimal contraction target v̄ for each valid pair
(v1,v2). The error v̄

T(Q1+Q2)v̄ of this target vertex becomes
the cost of contracting that pair.

4. Place all the pairs in a heap keyed on cost with the minimum
cost pair at the top.

5. Iteratively remove the pair (v1,v2) of least cost from the heap,
contract this pair, and update the costs of all valid pairs involv-
ing v1.

The only remaining issue is how to compute the initialQmatrices
from which the error metric! is constructed.

2You can verify this for yourself by taking partial derivatives of

v
TQv = q11x

2 + 2q12xy+ 2q13xz+ 2q14x+ q22y
2

+ 2q23yz+ 2q24 y+ q33z
2 + 2q34z+ q44

• Can join unconnected components

• Can result in much nicer approximations

Error Metric
[Ronfard96] suggested the following:

• Each vertex is the intersection of a set of planes.

• Define the error at a vertex to be the sum of the
squared distances to its planes.

∆(v) = ∆([vx vy vz 1]T) =
∑

p∈planes(v)

(pT v)2

p = [a b c d]T ax + by + cz + d = 0Where represents the plane

a2 + b2 + c2 = 1with

Error Metric (2)
∆(v) =

∑
p∈planes(v)

(pT v)2

=
∑

p∈planes(v)

(pT v)T (pT v)

=
∑

p∈planes(v)

(vT p)(pT v)

=
∑

p∈planes(v)

vT (ppT)v

= vT

 ∑
p∈planes(v)

(ppT)

v

Error Metric (3)

∆(v) = vT

 ∑
p∈planes(v)

(ppT)

v

= vT

 ∑
p∈planes(v)

Kp

v

Kp = ppT =

a2 ab ac ad
ba b2 bc bd
ac bc c2 cd
ad bd cd d2

Where

Kp is the fundamental error quadric.

Error Metric (4)

• For each vertex store a symmetric 4x4 matrix .

• For a given contraction , let .

• The matrices are called quadrics because the level sets
of form quadric surfaces (usually ellipsoids).

vi

(v1,v2) → v̄ Q̄ = Q1 + Q2

Qi

∆(v) = ε

Figure 8: Original bunny model with 69,451 triangles. Rendered
using flat shading just as in approximations below.

Figure 9: An approximation using only 1,000 triangles (generated
in 15 seconds).

Figure 10: An approximation using only 100 triangles (generated in
15 seconds).

Figure 11: 1,000 face approximation. Error ellipsoids for each ver-
tex are shown in green.

Figure 12: Terrain model of Crater Lake (199,114 faces).

Figure 13: Simplified model with 999 faces (took 46 seconds).

Qi

More on Quadrics
p = [a b c d]Tvh = [vx vy vz 1]T

n = [a b c]Twhere

= (vT n + d)(nT v + d)

= (vT nnT v + 2dnT v + d2)

D2(vh) = (pT vh)2 = (nT v + d)2

= (vT (nnT)v + 2(dn)T v + d2)

X = nnT =

 a2 ab ac
ba b2 bc
ac bc c2

 y = dn = [da db dc]T z = d2

More on Quadrics (2)

X = nnT =

 a2 ab ac
ba b2 bc
ac bc c2

 y = dn = [da db dc]T z = d2

Q =

a2 ab ac ad
ba b2 bc bd
ac bc c2 cd
ad bd cd d2

 = Q(X,y, z)

∆(v) = vT Qv = vT Xv + 2yT v + z

Performing Contractions
(v1,v2) → v̄To perform a contraction , we must find .̄v

Specifically, we want .∇(∆(v̄)) = 0

∇(∆(v̄)) = 2Xv̄ + 2y

2Xv̄ + 2y = 0 =⇒ v̄ = −X−1y

The associated minimum error is:

∆(v̄) = yT v̄ + z = −yT X−1y + z

Algorithm Summary

• Compute initial quadrics for each vertex.

• Select all valid pairs.

• Compute the optimal contraction target for each pair and
let its associated error be the cost of the contraction.

• Place all pairs in a keyed heap on cost with the minimum
cost pair at the top.

• Iteratively remove the pair with least cost from the heap,
contract the pair, and update the cost of all valid pairs
involving this contracted vertex.

Additional Details

• As proposed in the paper, the algorithm is
very sensitive to tessellation.

• In practice, weight each quadric according to
area as in [Garland99].

48 CHAPTER 3. BASIC SIMPLIFICATION ALGORITHM

[107] for adding quadrics; however, it would complicate an otherwise simple
algorithm. In fact, multiple counting is arguably beneficial. Consider the set
of faces represented by the quadric Q; these faces form a connected region on
the surface. Faces which intersect the region everywhere, along a single edge,
and at a single vertex are triply, doubly, and singly counted, respectively. This
has the effect of giving full weight to faces within the region of influence and
of discounting faces along the boundary of that region. In any case, the Eplane

metric, which explicitly tracks sets of planes, is really only a heuristic to begin
with. The fact that the quadric metric EQ is not exactly equivalent to it simply
means that EQ is a slightly different heuristic than Eplane.

This question of multiple counting leads us to a much more important issue.
The summation of uniformly weighted quadrics, defined by the faces of the
original model, is too dependent on the input tessellation. What is really needed
is a more careful definition of the quadric error metric.

3.4.1 Normalized Quadric Metric

The form of the quadric error metric given by (3.11) is generally the most
convenient for discussion. However, it is not the most appropriate in practice.
It can be too heavily influenced by the structure of the mesh because every
plane in the summation is given equal weight. For instance, this may produce
undesirable results when some triangles are very large while others are very
small.

Generally speaking, we are more concerned with the shape of the surface
than the specific way in which it is tessellated. Suppose we take a region on
the surface and tessellate it in two different ways, both of which have exactly
the same geometry. Each face determines a single fundamental quadric. If

(a) (b)

Figure 3.8: Two different triangulations of a planar region.

we add up the quadrics for each face, we have the total quadric for the entire
region. Consider the planar region shown in Figure 3.8. Since it is a plane,

Additional Details (2)

• When we wish to preserve boundaries, we can
create perpendicular planes to boundary edges.

• Then, weight the associated fundamental quadrics
appropriately to penalize movement away from the
boundary.

3.6. DISCONTINUITIES AND CONSTRAINTS 53

3.6 Discontinuities and Constraints

Discontinuities of a model, such as creases, open boundaries, and borders be-
tween differently colored regions, are often among its most visually significant
features. Therefore, their preservation is critical for producing quality approx-
imations. The fundamental quadric algorithm can already handle shape dis-
continuities (e.g., creases), and it can easily accommodate boundary curves as
well.

Surface shape discontinuities (where there is only C0 continuity) are implic-
itly preserved by the error metric as described. For example, consider the sharp
edges of a cube. A point on the edge of a cube will have contributing planes
from both adjoining faces of the cube. Since these planes are perpendicular, the
cost of moving the point along the edge is much lower than moving it away from
the edge. Consequently, the algorithm will be strongly biased against altering
the shape of these edges.

Figure 3.10: Sample boundary constraint plane. Every edge along the boundary
defines a single constraint plane.

In contrast, the basic algorithm ignores boundary curves. Fortunately, we
can easily incorporate boundary constraints into the existing framework. Dur-
ing initialization, my implementation flags all boundary edges. For each face
adjacent to a given boundary edge, it computes a plane perpendicular to the
face through the edge. The perpendicular plane defines a boundary constraint
plane (see Figure 3.10). We can form a quadric for this plane, just as with a reg-
ular face plane. To form a constraint from this quadric, I weight it using a large
penalty factor4, and add it into the initial quadric for each of the endpoints.
The primary attraction of this approach is that it allows the iterative core of
the algorithm to preserve boundaries without any special-case logic. Once the
constraint planes are added to the initial quadrics, the algorithm proceeds in
exactly the same manner as before.

When using area-weighted quadrics, the constraint quadrics must be prop-
erly weighted. Perhaps the most obvious approach is to weight each constraint
quadric by the area of the face attached to the boundary edge. However, this
makes the resulting quadric dependent on the tessellation near the boundary.

4 My implementation uses a default penalty factor of 1000.

Additional Details (3)

56 CHAPTER 3. BASIC SIMPLIFICATION ALGORITHM

a slightly different color, or if we have a triangulated regular grid where every
other triangle is a hole, the results will not be good. There will be too many
constraints; it will become difficult for the algorithm to discriminate between
the available edges to contract.

3.7 Consistency Checks

The quadric error metric is the means by which my algorithm selects contrac-
tions to perform and the location at which to place the resulting vertex. How-
ever, a given contraction may potentially introduce undesirable inconsistencies
or degeneracies into the mesh. We can combat this problem by applying a set
of consistency checks to a proposed contraction. If it fails one of these checks,
we can either add a large penalty factor (as with boundary constraints) or dis-
card the contraction entirely. If we only penalize “bad” contractions, there is
no guarantee that it will not be performed if all other contractions have higher
penalties. However, it does ensure that the algorithm will still make progress
even when all contractions are considered “bad”. This is particularly relevant if
we are applying several different checks. On the other hand, discarding contrac-
tions will prevent inconsistencies from occurring, but we may not necessarily be
able to make progress. Discarded contractions will only be reconsidered when
their local neighborhood is changed and they are consequently reevaluated.

The most common consistency check is related to the problem of mesh inver-
sion. Consider the contraction shown in Figure 3.14. For this particular choice

Before After

contract

vi

vj
v
–

Figure 3.14: An edge contraction which causes the mesh to fold over on itself.

of the position v̄, the mesh folds over onto itself (the darkened area). One pop-
ular approach to detecting this situation is to examine the normals of the faces
adjoining vi and vj before and after the contraction [68, 90, 158, 114]. If a
face’s normal changes by more than some significant threshold, we can regard
this face as having “flipped” as a result of the contraction. A contraction fails
this check if any of the local faces flip. While this approach does, in principle,
prevent fold-over, it requires us to pick a suitable threshold value.

In my implementation, I have chosen to use a more careful check [23, 52]
which appears to perform more reliably in practice. For every face around vi,

• Contractions may invert the mesh.

• The paper proposes penalizing contractions where
the normal of a face changes by more than some
threshold value.

• A better solution is described in [Garland99], which
defines the region the contracted vertex may occupy
without causing foldover.

Additional Details (4)

v̄ = −X−1y

• Computing inverses is bad: use Cholesky decomposition
(since is positive semidefinite, by construction).

• What if is singular?

• Can use SVD to project vertex onto the solution space.

• In practice, look along line between source vertices or
just pick whichever source vertex minimizes the error.

X

X

Additional Details (5)

v̄ = −X−1y

a1 b1 c1

...
ak bk ck

...
an bn cn

 vx

vy

vz

 =

d1
...

dk
...

dn

⇐⇒

More on Stability: [Ju02]

∆(v)Evaluating as proposed not stable with floats.

G(X y) =

x x x x
0 x x x
0 0 x x
0 0 0 x
0 0 0 0

.

 =

X̂ ŷ
0 z
0 0

.

Compute a sequence of givens rotations s.t.:G

v̄ = −X−1y = −X̂−1ŷ

Results

6.2. GEOMETRIC QUALITY OF RESULTS 109

(a) Original; 424,376 faces (b) 60,000 face approximation

(c) 8000 face approximation (d) 1000 face approximation

Figure 6.12: The dental model and three sample approximations.

6.2. GEOMETRIC QUALITY OF RESULTS 109

(a) Original; 424,376 faces (b) 60,000 face approximation

(c) 8000 face approximation (d) 1000 face approximation

Figure 6.12: The dental model and three sample approximations.

424,376 60,000 8,000 1,000

Results

Figure 14: Original. Bones of a human’s left foot (4,204 faces).
Note the many separate bone segments.

Figure 15: Uniform Vertex Clustering. 262 face approximation
(11×4×4 grid). Indiscriminate joining destroys approximation
quality.

Figure 16: EdgeContractions. 250 face approximation. Bone seg-
ments at the ends of the toes have disappeared; the toes appear to be
receding back into the foot.

Figure 17: PairContractions. 250 face approximation (t= 0.318).
Toes are being merged into larger solid components. No receding
artifacts. This model now contains 61 non-manifold edges.

Figure 18: Level surfaces of the error quadrics at the vertices of the
approximation shown in Figure 16.

Figure 19: Pairs selected as valid during initialization (for Fig. 17).
Red pairs are edges; green pairs are non-edges.

Figure 14: Original. Bones of a human’s left foot (4,204 faces).
Note the many separate bone segments.

Figure 15: Uniform Vertex Clustering. 262 face approximation
(11×4×4 grid). Indiscriminate joining destroys approximation
quality.

Figure 16: EdgeContractions. 250 face approximation. Bone seg-
ments at the ends of the toes have disappeared; the toes appear to be
receding back into the foot.

Figure 17: PairContractions. 250 face approximation (t= 0.318).
Toes are being merged into larger solid components. No receding
artifacts. This model now contains 61 non-manifold edges.

Figure 18: Level surfaces of the error quadrics at the vertices of the
approximation shown in Figure 16.

Figure 19: Pairs selected as valid during initialization (for Fig. 17).
Red pairs are edges; green pairs are non-edges.

Variational Shape Approximation: [Cohen-Steiner04]

remaining edge, we first test if removing it would not induce a con-
cavity in the mesh, and if it would not change the normal by more
than a given threshold (typically, 20 degrees); for the eligible edges,
we compute a score based on the area of the potential polygon; we
finally go over the edges in order of decreasing score, to create the
largest polygons first. A close-up on the remeshed Fandisk model
in Figure 12 exhibits the type of polygonalization we finally obtain.

The meshing of the proxies is fast, and never took more than
one second on all the meshes shown in this paper. Other meshing
techniques could be used, using local parameterization of the re-
gions for instance, but our discrete parameterization-free approach
has proved satisfactory.

Figure 13: L2,1-Approximation: our versatile framework optimizes the effi-
ciency of geometric representations. (Left) Armadillo (300 proxies, initially
346K triangles), (Right) Feline (50 proxies, initially 100K triangles).

5 Results and Discussion
We have tested our variational partitioning technique extensively,
on geometry varying from organic shapes to mechanical parts, and
from toy examples to large, noisy scanned meshes (see Figures 2
and 13). Although the L2 metric provides good approximations in
general, the L2,1 results are in agreement with what we would have
intuitively expected from a good segmentation of geometry, and of-
ten capture more details. In both cases, our variational approach
allows the symmetries to be quickly found, the anisotropy to be au-
tomatically detected and exploited, and the regions to line up with
the features. Finally, we insist on the fact that, while the “canons
of beauty” for graphics meshes usually involve nicely-shaped tri-
angles with a smooth sampling gradation, our concise, optimized
meshes sharply depart from the norm; but they gain in efficiency by
respecting features and symmetries (see Figure 17).

The application of this new type of approach are numerous. Such
an automatic segmentation/polygonalization of redundant datasets
can be, for instance, directly used for reverse engineering [Várady
et al. 1997; Botsch and Kobbelt 2001] and scanned meshes. The
proxy optimization also seem to offer interesting alternatives to
existing methods, such as the greedy selection of representative
planes for billboard clouds [Décoret et al. 2003]. Moreover, us-
ing anisotropic ellipses (computed from the eigenvalues of the re-
gions’ covariant matrices) could further optimize surface splatting.
The WENO-type face clustering has been surprisingly effective at
smoothing geometry, and could be explored further. Lastly, vari-
ous optimizations are likely to further improve the efficiency of the
minimization procedure, such as lazy evaluations for instance.
Limitations Being based on iterative optimization, our tech-
nique cannot compete with greedy methods such as [Garland and
Heckbert 1998] in terms of computational time: improving mesh
efficiency can be three to twenty times slower when compared with
simplex removal. Although it remains fairly interactive (between 3s
for Figure 1, to 10 minutes for Figure 17), it should be reserved for
offline computations: greedy approaches perform really well given

Figure 14: (Left) Dinosaur model; (Center) L2,1-approximation; (Right)
Results for QEM [Garland and Heckbert 1998] with same number of edges.
Note that our approach reproduces the “highlights” (see neck), with a sym-
metric Hausdorff error 18% better (as measured by [Aspert et al. 2002]).

the processing time (see Figures 14 and 15). In fact, our tests show
that Qslim [Garland and Heckbert 1998] often outperforms our L2

results if an L2-optimized mesh with a given number of triangle
is sought, as our actual meshing procedure is not error-driven and
is intrinsically designed for polygonal outputs. Similarly, we are
only handling piecewise-linear 2-manifolds, although an extension
to point clouds with local approximation of connectivity is feasi-
ble. At the algorithmic level, our meshing technique can still be
improved. For instance, we could allow the final mesh to be non-
manifold, resulting in even more concise meshes for extreme sim-
plifications. Indeed, in the case of a fin-like feature, we currently
create a pyramid-type fin during the discretization even if there is
only one region for the whole fin. Lastly, the Voronoi-like cells ob-
tained on spherical regions (see top of Homer’s head on Figure 5)
indicate that we could locally extract a dual mesh, leading to nicely-
shaped triangles in round regions and still elongated elements in
anisotropic regions.

Figure 15: Comparison of the Hausdorff error for QEM [Garland and Heck-
bert 1998] and for our L2,1 technique, for equal number of vertices (a com-
parison using equal number of edges leads to an extremely similar curve).

6 Conclusions
By breaking away from the traditional approximation paradigm that
consists in directly optimizing a piecewise-linear approximant of
an original surface, we have proposed a simple and efficient vari-
ational shape approximation approach. Through mutual and re-
peated error-driven optimizations of a partition and a set of local
proxies, our method provides concise geometric representations ei-
ther in the form of local best-fit geometric representatives or in the
form of a polygonal mesh. We have also presented a novel shape
metric, allowing the capture of more subtle details than the tradi-
tional L2 metric.

The versatility of our framework paves the way to a multitude of
future work. We plan to try a Sobolev metric (H1) next, since it
would simply consist of the sum of the L2 and L2,1 energies and
would only require a low-order polynomial root solver to compute
the best fit. Other metrics, incorporating color and texture infor-
mation, can also be easily tried. Variational motion approximation,
i.e., a 4D (3D + time) approximation using a space-time metric,

912

• Formulate surface
simplification as an
optimization problem.

• Use clustering to fit local
shape proxies to surface.

• Use these proxies to
produce approximating
surfaces.

!"#$%&&%'() *') $+,") -%.%*+/) '#) 0+#-) 1'2%"&) '3) 2+#*) '#) +//) '3) *0%&) 4'#,) 3'#) 2"#&'(+/) '#
1/+&&#''$)5&")%&).#+(*"-)4%*0'5*)3"")2#'6%-"-)*0+*)1'2%"&)+#")('*)$+-")'#)-%&*#%75*"-)3'#
2#'3%*)'#)-%#"1*)1'$$"#1%+/)+-6+(*+.")+(-)*0+*)1'2%"&)&0'4)*0%&)('*%1")'()*0")3%#&*)2+.")'#
%(%*%+/)&1#""()'3)+)-%&2/+8)+/'(.)4%*0) *0") 35//)1%*+*%'(9):'28#%.0*&) 3'#)1'$2'("(*&)'3) *0%&
4'#,)'4("-)78)'*0"#&)*0+();:<)$5&*)7")0'('#"-9);7&*#+1*%(.)4%*0)1#"-%*)%&)2"#$%**"-9)='
1'28)'*0"#4%&">) *') #"257/%&0>) *') 2'&*) '() &"#6"#&>) *') #"-%&*#%75*") *') /%&*&>) '#) *') 5&")+(8
1'$2'("(*)'3) *0%&)4'#,) %()'*0"#)4'#,&) #"?5%#"&)2#%'#)&2"1%3%1)2"#$%&&%'()+(-@'#)+) 3""9
!"#$%&&%'(&)$+8)7")#"?5"&*"-)3#'$)!57/%1+*%'(&)A"2*9>);:<>)B(19>)CDCD)E#'+-4+8>)F"4
G'#,>)FG)CHHIJ)KL;>)3+M)NC)OPCPQ)RJSTHURC>)'#)2"#$%&&%'(&V+1$9'#.9

Variational Shape Approximation
David Cohen-Steiner

Duke U.
Pierre Alliez

INRIA
Mathieu Desbrun

U. of So. Cal.

Abstract
A method for concise, faithful approximation of complex 3D
datasets is key to reducing the computational cost of graphics ap-
plications. Despite numerous applications ranging from geometry
compression to reverse engineering, efficiently capturing the geom-
etry of a surface remains a tedious task. In this paper, we present
both theoretical and practical contributions that result in a novel and
versatile framework for geometric approximation of surfaces. We
depart from the usual strategy by casting shape approximation as
a variational geometric partitioning problem. Using the concept of
geometric proxies, we drive the distortion error down through re-
peated clustering of faces into best-fitting regions. Our approach is
entirely discrete and error-driven, and does not require parameteri-
zation or local estimations of differential quantities. We also intro-
duce a new metric based on normal deviation, and demonstrate its
superior behavior at capturing anisotropy.
Keywords: surfaces, geometric approximation, geometric error
metrics, Lloyd’s clustering algorithm, anisotropic remeshing.

1 Introduction
Finding a concise, yet geometrically-faithful digital representation
of a surface is at the core of several research themes in graphics.
Given the excessive verbosity of many 3D datasets (and in partic-
ular, of scanned meshes), reducing the number of mesh elements
(triangles, quads, or polygons) of a surface mesh while maintaining
its geometric fidelity is crucial for subsequent geometry process-
ing. Ideally, each element should be made as efficient as possible by
stretching it locally in order to fit a large area of the shape we wish
to approximate while minimizing geometric error. This quest for
geometric efficiency naturally raises the following question: given
a 3D surface, a target number of face elements, and an error metric,
what is the best geometric approximation of the object that one can
find with this face budget? Or similarly, given a distortion tolerance,
what is the smallest polygonal mesh approximant with a distortion
lesser than the tolerance? Despite the fundamental nature of this
question, its cry for an NP-hard optimization problem has led most
researchers to shy away from the search for “optimal” meshes. In
this paper, we present a novel approach where shape approximation
is tackled as a discrete, variational partitioning problem for which
provably-good heuristics are readily available.
1.1 Related Work
Many techniques have been specifically designed to exploit an ob-
ject’s local planarity, symmetry and features in order to optimize its
geometric representation. While most simplification approaches try
to provide an ε-approximation with respect to various metrics, rare
are the methods that target a minimum distortion error for a given
budget of linear mesh elements.
Partitioning A powerful solution to mesh simplification is to
greedily cluster geometric elements, creating in effect a partition of
the original object. Mesh decimation provides an elegant approach

Figure 1: Variational Shape Approximation: Through repeated error-driven
partitioning (left), we find a set of geometric proxies (represented as ellipses,
center) providing a concise geometric description of an input surface (62K
triangles) by efficiently capturing the anisotropy of the initial model; no-
tice the presence of disks on near-spherical regions, and stretched ellipses
on near-parabolic regions. These proxies are then used to construct an ap-
proximating polygonal mesh (right). No user interaction, parameterization,
or differential estimates have been used; total processing time: 3s.

to such a partitioning, through greedy and repeated collapsing of
mesh elements [Hoppe 1996; Klein et al. 1996; Garland and Heck-
bert 1998; Lindstrom and Turk 1998]. However, and although some
of the metrics used for clustering can be proven asymptotically op-
timal (i.e., for infinitesimal triangles) for the L2 metric [Heckbert
and Garland 1999], the greedy nature of decimation leads to sub-
optimal meshes. A similar statement is true for another (almost
dual) family of approaches [Maillot et al. 1993; Kalvin and Taylor
1996; Inoue et al. 1999; Sheffer 2001; Sander et al. 2001; Garland
et al. 2001; Grinspun and Schröder 2001; Lévy et al. 2002] which
gather faces in a set of characteristic regions to provide a succinct,
higher-level description of the geometry. Even when this process is
iterated to improve the results [Shlafman et al. 2002; Katz and Tal
2003], no attempt is made at minimizing a well-defined geometric
error.
Global optimization Contrasting sharply with the previous
greedy techniques, Hoppe et al. [Hoppe et al. 1993] proposed to
cast mesh simplification as an optimization problem. With an
energy functional measuring deviation from the input mesh, they
showed that optimizing the number of vertices, as well as their
positions and their connectivity, captures the curvature variations
and features of the original geometry. Although their functional is
mostly a point-to-surface Euclidean distance, they report excellent
results for mesh simplification. This method was extended later on
to also use an image metric, in order to optimize the mesh not only
through its geometry, but using its texture and normals [Lindstrom
and Turk 2000]. Despite a spring force restricting the anisotropy
of the results, such optimization techniques often result in irreg-
ular meshes for which geometric efficiency (i.e., how many faces
are needed to capture geometry) is particularly good. While other
methods use some form of local mesh optimization (see, for in-
stance, [Balmelli et al. 2002; Ohtake et al. 2003b]), this subject re-
mains marginally studied to date, most certainly because the mere
size of the search space hampers efficiency.
Anisotropy Remeshing techniques [Turk 1992; Lee et al. 1998;
Kobbelt et al. 1999; Guskov et al. 2000] are often much less con-
cerned by approximation efficiency than by the quality of the mesh
elements. For instance, the new vertices are very often left on the

905

W)PHHU);:<)HXIHTHIHC@HU@HRHHTHSHD)YD9HH

Better approximation than QER.
Much slower than QER.

References
• M. Garland and P. Heckbert. Surface simplification using quadric error metrics. In

Proceedings of SIGGRAPH 97, pp. 209–216, August 1997.

• W. Schroeder, J. Zarge, and W. Lorenson. Decimation of triangle meshes.
Proceedings of SIGGRAPH 92, pp.65–70, August 1992.

• H. Hoppe. Progressive meshes. In Proceedings of SIGGRAPH 96, pp. 99–108,
August 1996.

• J. Rossignax and P. Borrel. Multi-resolution 3D approximations for rendering
complex scenes. In Modeling in Computer Graphics: Methods and Applications,
pp. 455-465, 1993.

• Michael Garland. Quadric-Based Polygonal Surface Simplification. Ph.D.
dissertation, Computer Science Department, Carnegie Mellon University, CMU-
CS-99-105, May 1999.

• T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring of Hermite data. In
Proceedings of SIGGRAPH 2002, pp. 339–346, 2002.

• D. Cohen-Steiner, P. Alliez, and M. Desbrun. Variational shape approximation. In
Proceedings of SIGGRAPH 04, pp. 905–914, August 2004.

