
NOTES ON DIFFERENTIAL GEOMETRY

MICHAEL GARLAND

Part 1. Geometry of Curves

We assume that we are given a parametric space curve of the form

(1) x(u) =

x1(u)
x2(u)
x3(u)

 u0 ≤ u ≤ u1

and that the following derivatives exist and are continuous

(2) x′(u) =
dx
du

x′′(u) =
d2x
du2

1. Arc Length

The total arc length of the curve from its starting point x(u0) to some
point x(u) on the curve is defined to be

(3) s(u) =
∫ u

u0

√
x′ ·x′ du

It is also common to express this equation in a differential form:

(4) ds2 = dx·dx

The differential ds is referred to as the element of arc of the curve.
Because we know that ds/du 6= 0, it is always permissible to reparame-

terize the curve x(u) in terms of its arc length x(s). This reparameterized
curve has derivatives:

(5) ẋ(s) =
dx
ds

ẍ(s) =
d2x
ds2

Such a parameterization of the curve is often called a unit-speed parameter-
ization because ‖ẋ‖ = 1.
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Figure 1. Local geometry around a point P . Points Q and
R are equidistant from P along the curve.

2. Local Frames and Curvature

To proceed further, we need to more precisely characterize the local ge-
ometry of a curve in the neighborhood of some point. All the necessary
properties of the curve can be derived algebraicly, as with the definition of
arc length. However, before examining these algebraic definitions, let us
consider a more direction construction that will provide greater intuition
about the geometry of the curve.

2.1. Geometric Construction. Consider a point P on the curve, with
additional points Q and R equidistant from P in opposite directions along
the curve (see Figure 1). We can define a unique circle C passing through
these points.

Now consider the circle C in the limit as Q and R approach P . This is
called the osculating circle of the curve at P . It will pass through the point
P , thus touching the curve at this point. The tangent line of C at P will
also be the tangent line of the curve at P . Furthermore, the vector from P
to the origin of C is obviously perpendicular to the tangent line at P , and
is therefore a normal vector of the curve at this point. The circle C also has
some radius ρ. We define the curvature at the point P to be κ = 1/ρ.

2.2. Algebraic Definitions. We assume that we are given a unit-speed
parameterization (§1) of a curve x(s). The unit tangent vector t is simply
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the first derivative of x:

(6) t = dx/ds = ẋ

Note that this is a unit vector precisely because we have assumed that the
parameterization of the curve is unit-speed. The second derivative ẍ will be
orthogonal to t, and thus defines a normal vector. The length of ẍ will be
the curvature κ. Therefore, we can define both the curvature normal k and
the unit normal n as:

(7) k = dt/ds = ẍ = κn

Since we are typically interested in curves embedded in E3, we can also
define the unit bi-normal

(8) b = t×n

For curves embedded in E3, these three unit vectors provide a complete
orthonormal basis. They are often referred to collectively as the moving or
local trihedron.

From the three vectors of the local trihedron, we can also define three
canonical planes through the point x

Normal plane: (y − x)·t = 0(9)

Rectifying plane: (y − x)·n = 0(10)

Osculating plane: (y − x)·b = 0(11)

It is the osculating plane that is usually of most interest to us, as it is the
plane that locally contains the curve (i.e., plane curves lie entirely within
their osculating plane, which is everywhere the same).

3. Frenet Formulas

At each point on the curve, we can define a local trihedron (t,n,b).
Unless the curve is a straight line, the trihedron will change as we move
along the curve. This naturally leads us to investigate how exactly the
trihedron changes along the curve. This is most succinctly expressed using
the Frenet Formulas, which give the derivatives of the trihedron vectors:

(12)
dt/ds = κn
dn/ds = −κt +τb
db/ds = −τn

This is often encountered in matrix–vector form as well:

(13)

 ṫ
ṅ
ḃ

 =

 0 κ 0
−κ 0 τ
0 −τ 0

t
n
b


Note that we have introduced a new local quantity — the torsion τ . Just

as curvature measures the change in the normal along the tangent direction,
the torsion measures the change in the normal along the bi-normal direction.
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Intuitively, the torsion measures the differential “twisting” of the trihedron
around the curve.

Interpreted kinematically, the motion of the local trihedron can be seen as
a differential translation (dx = t ds) combined with a differential rotation.
The axis of this rotation, often referred to as the vector of Darboux, is simply

(14) r = τt + κb

This allows us to rewrite the Frenet equations in the following way

(15) ṫ = r×t ṅ = r×n ḃ = r×b

Also note that r can be seen as an angular velocity vector, and thus ω = ‖r‖
is the speed with which the trihedron is rotating.

We can perform a Taylor expansion of x around some point x(s0):

(16) x(s0 + h) = x(s0) + hẋ(s0) +
h2

2
ẍ(s0) + · · ·

which leads to the following approximation of x in the neighborhood of a
point x(s0):

(17) x(s0 + h) ≈ x0 + ht0 + κ0
h2

2
n0 + κ0τ0

h3

6
b0
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Part 2. Geometry of Surfaces

Let us assume that we are given a closed differentiable manifold surface
M which has been divided into a set of patches. A given surface patch is
defined by the mapping

(18) x = x(u, v) =

f1(u, v)
f2(u, v)
f3(u, v)


where (u, v) range over a region of the Cartesian 2-plane and the functions fi

are of class C2. We shall be concerned with the surface in the neighborhood
of a point p = x(u0, v0). By convention, all functions of x and its derivatives
are implicitly evaluated at (u0, v0).

4. The Tangent Plane

The partial derivatives of the patch function x

(19) x1 = xu = ∂x/∂u and x2 = xv = ∂x/∂v

span the tangent plane of the surface at p, provided we make the standard
assumption that x1×x2 6= 0.

Let t be a vector tangent to the surface x at the point p. We know
that we can write it as a linear combination t = α1x1 + α2x2. Therefore,
we can also conveniently represent this tangent vector as a direction vector

u =
[
α1

α2

]
.

We will generally be concerned with differential tangent vectors, that we
will write as:

(20) dx = dux1 + dv x2

Here we have a corresponding direction vector u =
[
du
dv

]
.

Given that we have two vectors spanning the tangent plane, we can also
compute the local unit surface normal n at the point p:

(21) n =
x1×x2

‖x1×x2‖

5. First Fundamental Form

We would like to compute the (squared) length of a given differential
tangent vector dx. As with any other vector in E3, we compute the squared
length of this vector via the inner product dx ·dx. Expanding this inner
product, we arrive at:

(22) dx·dx = du2 x1 ·x1 + 2du dv x1 ·x2 + dv2 x2 ·x2

This quadratic form is called the first fundamental form. The classical no-
tation for this quadratic form, dating back to Gauss, was the following:

(23) ds2 = E du2 + 2F du dv + G dv2
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For our purposes, it is more convenient to write this quadratic form using
matrix/vector notation. Assuming that we are given a direction vector u =
[du dv]T, then we can write the first fundamental form as:

(24) dx·dx = uTGu where G =
[
g11 g12

g21 g22

]
with gij = xi ·xj

The matrix G is usually referred to as the metric tensor. Since the dot
product is commutative, it is clear that gij = gji and thus G is symmetric.
We will also frequently have need to use the determinant of the metric tensor:

(25) g = detG = g11g22 − g2
12

Notice that our assumption that x1×x2 6= 0 implies that g 6= 0.
We can also use the metric tensor to measure the angle between two

tangent vectors. Suppose we are given two direction vectors u and v. The
angle θ between them is characterized by:

(26) cos θ =
uTGv

(uTGu)(vTGv)

In the special case of the angle θ̂ between the two isoparametric lines this
reduces to:

(27) cos θ̂ =
g12√
g11g22

sin θ̂ =
√

g

g11g22

5.1. The Jacobian. The Jacobian matrix of our surface patch x is the
matrix of partial derivatives:

(28) J =

∂f1/∂u ∂f1/∂v
∂f2/∂u ∂f2/∂v
∂f3/∂u ∂f3/∂v

 =


...

...
x1 x2
...

...


The metric tensor G can also be derived as the product of the Jacobian

with its transpose:

(29) G = JTJ =
[
x1

x2

]
[x1 x2] =

[
x1 ·x1 x1 ·x2

x1 ·x2 x2 ·x2

]
The Jacobian also provides a convenient notation for connecting the dif-

ferential tangent dx with its direction vector u. Specifically, dx = Ju.

5.2. Element of Area. Because it measures lengths and angles, the first
fundamental form is also the key to defining surface area. Suppose that we
are given a region Ω on our surface patch x. Its area is given by the integral

(30)
∫∫
Ω

dA =
∫∫

√
g du dv

The differential dA =
√

g du dv is referred to as the element of area of the
surface.
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6. Second Fundamental Form

Suppose that we wish to measure the change of the normal vector n in a
given tangential direction: −dx ·dn. This is the second fundamental form.
Like the first fundamental form, it also has a classical Gaussian notation:

(31) Ldu2 + 2M du dv + N dv2

We will generally work with the second fundamental form in its matrix
version:

(32) −dx·dn = uTBu where bij = n·xij = −ni ·xj .

As with the first fundamental form, we define the determinant of this tensor

(33) b = detB = b11b22 − b2
12

7. Surface Curvature

We have already seen in Section 2 how to define the curvature of a space
curve. We can readily extend this definition to define the curvature of a
surface as well.

Consider a point p on our surface patch. At this point we can compute
a unit surface normal vector n. Now suppose that we select an arbitrary
unit tangent vector t, with corresponding direction vector u. There is a
unique plane passing through p containing both the vectors n and t. In the
neighborhood of p, this plane intersects the surface along some curve. This
curve is a normal section of the surface (see Figure 2).

n

t

Figure 2. Normal section

Applying the constructions of Section 2, we can define the curvature of
this normal section. We call this the normal curvature of the surface in
the direction u. We denote the normal curvature as κn. While technically
normal curvature is a function of direction — its full form is κn(u) — we gen-
erally drop the direction u for convenience. Its presence however is always
implicit.
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This definition of normal curvature is the most convenient intuitive defin-
tion. We can also define it algebraically in terms of the fundamental forms.
In particular, the normal curvature κn in the direction u is

(34) κn =
uTBu
uTGu

7.1. Principal Curvatures. Unless the curvature is equal in all directions,
there must be a direction e1 in which the normal curvature reaches a max-
imum and a direction e2 in which it reaches a minimum. These directions
are called principal directions and the corresponding curvatures κ1, κ2 are
the principal curvatures. It also turns out that the normal curvature κn in
an arbitrary direction can be written in terms of the principal curvatures:

(35) κn = κ1 cos2 θ + κ2 sin2 θ

where θ is the angle between the direction in question and the first principal
direction.

In addition to the principal curvatures, we are also interested in two
important quantities. The first is the mean curvature

(36) H =
1
2
(κ1 + κ2)

The second is the Gaussian curvature

(37) K = κ1κ2

A given point on the surface can be classified according its principal cur-
vatures. A point at which κn is equal in all directions is called an umbilic
point; for example, every point on a sphere is an umbilic point. In the special

(a) Parabolic (K = 0) (b) Hyperbolic (K < 0) (c) Elliptic (K > 0)

Figure 3. The three non-umbilic point classifications.

case that κn = 0 in all directions, such as on a plane, the point is called a
flat point. For non-umbilic points, the principal curvatures are well-defined.
Figure 3 illustrates the three resulting categories. A parabolic point is one
where a single principal curvature is 0. At an elliptic point both principal
curvatures are positive. And at a hyperbolic point, one principal curvature
is positive and one is negative. Note that there is a sign ambiguity present
in the curvatures κ1 and κ2. If we flip the orientation of the surface normal,
the signs of the curvatures will flip as well.
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All information about the local curvature of a surface can be encapsulated
in a single tensor

(38) S = G−1B

This tensor is variously called the curvature tensor, shape operator, and the
Weingarten map. It has several important properties. Firstly, its eigenvalues
are the principal curvatures κ1, κ2. Its corresponding eigenvectors are the
principal directions e1, e2. Because the principal curvatures of S, we also
know that the Gaussian curvature is

(39) K = detS =
b

g

and the mean curvature is

(40) H =
1
2

trS

8. Geodesics

Suppose that we’re given a unit-speed curve y that lies on the surface
and passes through the point p. At this point, the curve has a unit tangent
t = ẏ and a unit normal m = ÿ. The curvature vector κm of this curve can
be decomposed as

(41) κm = ÿ = κnn + κgs

where n is the unit surface normal and s = n×t is tangent to the surface.
The curvature κn is the normal curvature of the surface in the direction t.
The curvature κg is called the geodesic curvature. Note that one consequence
of this equation is that

(42) κn = κ(m·n) = κ cos φ

where φ is the angle between the curve’s normal m and the surface normal
n.

A geodesic curve is one whose geodesic curvature κg is everywhere 0. For
a point q in the vicinity of p, the curve passing through both p and q with
shortest arc length between them will be a geodesic. Therefore, geodesics
are in an intuitive sense the “straight” lines intrinsic to a surface.
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Part 3. Mappings

Given two surfaces M1 and M2, we are interested in exploring the proper-
ties of functions f : M1 → M2 that provide a continuous mapping of points
on M1 into corresponding points on M2. We classify mappings based on
those geometric properties of the surface that they preserve. There are sev-
eral classes of mappings that are commonly defined, but we are particularly
interested in the following:

• Isometric mapping — preserves lengths.
• Conformal mapping — preserves angles.
• Equiareal mapping — preserves areas.
• Geodesic mapping — the image of a geodesic is a geodesic.

In the following sections, we explore some of the specific properties of
these mappings. Throughout this discussion, we assume that our attention is
restricted to a given patch of M1 parameterized by the function x : E2 → E3.
This induces a parameterization y : E2 → E3 of the corresponding patch of
M2 where y = f ◦ x. We say that f is an allowable mapping if y meets our
basic regularity requirement that y1×y2 6= 0. The parameterizations x,y
of M1,M2 induce metrics G1,G2.

9. Isometric Mappings

Isometric mappings, or isometries, preserve lengths. This means that,
for any curve C on M1, the lengths of C and f(C) are identical. More
specifically, we can say that

(43)
∫

C
ds1 =

∫
f(C)

ds2 for any curve C on M1

From this definition of isometry, it is fairly easy to prove that f is an iso-
metric mapping if and only if G1 = G2.

Isometric mappings are a very restricted class of mappings. The require-
ment that G1 = G2 implies that the two surface patches under consid-
eration must have identical intrinsic geometries. One easy consequence of
this is that isometric surfaces must have equal Guassian curvatures at every
pair of corresponding points. Thus, the only surfaces that may be mapped
isometrically into the plane are the developable surfaces.

10. Conformal Mappings

As stated above, conformal mappings are those that preserve angles. Con-
sider two curves C,D on M1 meeting at a point p with angle θ. If f is a
conformal mapping then their images, f(C) and f(D), will also meet with
angle θ at f(p).

The class of conformal mappings is much broader than the class of isome-
tries. Specifically, the mapping f is conformal if and only if G2 = cG1

for some smoothly varying local scale function c. If c is constant over the
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entire surface, then f is in fact a similarity mapping and is for all practical
purposes an isometry.

10.1. In the Plane. It is also fruitful to consider the simplest case of con-
formal mappings in the plane. For a variety of reasons, it is convenient to
discuss such mappings in terms of complex-valued functions.

We define f : C → C in terms of a real part u and an imaginary part v:

(44) f(z) = u(z) + iv(z)

The function f is thus a mapping of the complex plane onto itself. To
simplify our discussion somewhat, let us assume that u and v are real-valued
functions:

(45) f(x + iy) = u(x, y) + iv(x, y)

It turns out that f is a conformal map if and only if its derivative f ′ =
df/dz exists. The requirement that f ′ exist is equivalent to the following:

(46)
∂u

∂x
=

∂v

∂y
and

∂v

∂x
= −∂u

∂y

These are the Cauchy-Riemann equations. They can also be restated in the
following form:

(47)
(

∂u

∂x
− ∂v

∂y

)
+ i

(
∂u

∂y
+

∂v

∂x

)
= 0

The Cauchy-Riemann equations provide the basic conditions for the ex-
istance of the derivative f ′. Another important consequence is that if u, v
satisfy the Cauchy-Riemann equations, then they also satisfy Laplace’s equa-
tion:

(48)
∂2u

∂x2
+

∂2u

∂y2
= 0 and

∂2v

∂x2
+

∂2v

∂y2
= 0

The converse is, however, not true. Functions satisfying the Laplace equa-
tion — which are called harmonic functions — do not necessarily satisfy
the Cauchy-Riemann equations and are thus not necessarily conformal.
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Part 4. Geometry of Discrete Manifolds

Up to this point, we have considered the geometry of differentiable man-
ifolds. This is of course the setting in which differential geometry was de-
veloped. However, discrete mesh representations of surfaces are at least as
common as differentiable surfaces in the applications of interest to us. In
this section, we briefly discuss the extension of many of the classical concepts
to the setting of discrete manifolds.

11. Notation and Conventions

We assume that we are dealing with a piecewise linear simplicial manifold
M = (V,E, F ) where V , E, and F are sets of vertices, edges, and faces. As-
suming that each of the vertices in V is assigned an index, we represent both
edges and faces as tuples of vertex indices. Unless noted otherwise, these
simplices are assumed to be oriented. This means that the pairs (i, j) and
(j, i) both refer to the same edge connecting vertices i and j, but with oppo-
site orientations. Similarly, the triangles (i, j, k) and (j, k, i) are equivalent,
but (k, j, i) has opposite orientation.

As before, we will be concerned with the geometry of this surface when
embedded in the Euclidean space E3. We will denote the position of vertex
i by xi. For a given oriented edge (i, j) — the edge from i to j — we define
the edge vector eij = xj − xi.

For a given triangle σ = (i, j, k), we can compute its surface normal nσ

from the cross product of its edge vectors:

(49) nσ =
eij×eik

‖eij×eik‖

Mirroring the continuous case, we assume that ‖eij×eik‖ 6= 0. Furthermore,
it is important to note that

(50) Area(σ) =
1
2
‖eij×eik‖

For a given vertex i, let Ni denote the set of vertices adjacent to the given
vertex.

(51) Ni = {j | (i, j) ∈ E}

Similarly, let Si denote the set of edges opposite the vertex i

(52) Si = {(j, k) | (i, j, k) ∈ F}

and let Ti be the set of faces incident on i.

(53) Ti = {σ | i ∈ σ and σ ∈ F}



NOTES ON DIFFERENTIAL GEOMETRY 13

12. Calculus on Simplicial Manifolds

It is important to remember that the development of a discrete differential
geometry is an active area of research. There is as yet no one agreed upon
framework for doing this. The development presented here is one possible —
and reasonably consistent — avenue for discretizing classical notions. But
there are others.

12.1. Functions and Vector Fields. We will generally be concerned with
continuous piecewise linear functions defined over the mesh. In particular,
we will regard a function f as a mapping

(54) f : V → R

and will denote by fi the value assigned by f to vertex i. This induces a
value f(x) for any point x on the surface, computed by linear interpolation
within the triangle (i, j, k) containing x.

As we will see, many of the operations we wish to perform on functions of
this sort are themselves linear. Therefore, it will at times be convenient to
identify the function f with a vector f ∈ Rn were n = |V |. In this case, the
value of f at vertex i is simply the i-th component (i.e., fi) of an n-vector.

Defining tangent vector fields on discrete manifolds is somewhat more
difficult than in the continuous case. On a differentiable manifold, every
point has a well defined tangent plane. For a triangulated manifold, this is
true only of points within a triangle. A vertex has no true tangent plane,
although we frequently construct an approximate tangent plane by some
local averaging procedure.

Because only triangles can truly be said to have a tangent plane, we
will generally restrict our discussion of tangent vectors to those which lie
in a specific triangle. We will therefore view a tangent vector field v as a
piecewise constant vector-valued function

(55) v : F → R3

assigning a single tangent vector vσ to each triangle σ ∈ F . Although it is
generally convenient to think of vσ as a 3-vector, it is a tangent vector, and
thus always satisfies vσ ·nσ = 0. It is therefore always possible to represent
vσ as a 2-vector in some suitable orthonormal basis local to the triangle.

12.2. Gradients. Given a piecewise linear function f defined over our mesh,
we naturally want to develop some suitable notion of the derivative of f .
This is easily done by a suitable definition for the gradient of f . We define
the gradient ∇f to be a tangent vector field

(56) ∇f : F → R3

We will denote the gradient vector within a face σ by gσ. Note that the
gradient vector has two important properties. First of all, it must lie in the
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plane of the triangle; therefore it must be the case that gσ ·nσ = 0. It also
allows as to express the restriction of f over σ as the linear function:

(57) fσ(x) = gσ ·x + bσ

This definition of gradient also allows us to easily define a notion of di-
rectional derivative. Given any tangent vector v in the plane of the triangle
σ, the directional derivative of f along v is:

(58) ∇vf = ∇f ·v = gσ ·v

Now, suppose that we select the edge vector e = xj − xi. The directional
derivative of f along the directed edge (i, j) is simply:

(59) ∇ef = fj − fi

This leads to a particularly straightforward way of computing the gradient
of f . For the triangle σ = (i, j, k), the gradient vector gσ is the solution to
the linear system:

(60)

 eij

ejk

nσ

gσ

 =

fj − fi

fk − fj

0


12.3. Curl and Divergence. The definitions provided here are based on
those developed by Polthier and Preuß [14].

For a vector field in the plane, we are accustomed to analyzing its struc-
ture in terms of quantities such as its curl and divergence. We can define
analogous operators for tangent vector fields on discrete meshes. As before,
we assume that the vector field v assigns a constant vector vσ to each tri-
angle σ in the mesh. Furthermore, we will focus on defining the curl and
divergence of such a field at the vertices of the mesh.

At vertex i, we wish to compute curli v.

(61) curli v =
1
2

∑
σ=(j,k)∈Si

vσ ·ejk

Before providing the definition of divergence, we first define a tangential
rotation operator Rσ. We use this operator to indicate a counter-clockwise
rotation by π/2 in the tangent plane of triangle σ. Obviously, Rσv = nσ×v.
We can also write this transformation in matrix form as:

(62) R =

 0 −n3 n2

n3 0 −n1

−n2 n1 0


where nσ = [n1 n2 n3 ]T.

We can now define the divergence of the vector field v at the vertex i as:

(63) divi v =
∑

σ=(j,k)∈Si

vσ ·(Rejk) =
∑

vσ ·(nσ×ejk)
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Note that this is a sum over all the triangles adjacent to vertex i. It is also
a fairly simple matter to show that this definition can be rewritten as a sum
over all the vertices adjacent to i:

(64) divi v =
1
2

∑
j∈Ni

(cot αij + cot βij)(xj − xi)·v

where αij , βij are the angles opposite the edge (i, j), as illustrated in Fig-
ure 4.

αθ

β

φ

vi

vj

Figure 4. Naming angles surrounding the edge (i, j).

12.4. Laplacian. Given a continuous function f : Rn → R, the Laplacian
of f is defined to be:

(65) ∆f = ∇2f =
n∑

i=1

∂2f

∂x2
i

The discretization of this on a simplicial 2-manifold is a mapping

(66) ∆f : V → R

where

(67) ∆fi = −1
2

∑
j∈Ni

(cot αij + cot βij)(fj − fi)

Note that this definition preserves the property that ∆f = div(∇f), as in
the continuous case.

For background on deriving this definition of the Laplacian, see Pinkall
and Polthier [13], Duchamp et al. [5], and Desbrun et al. [2].

12.5. Discrete Differential Forms. A common formalism of modern cal-
culus is the differential form. Indeed, some developments of the differential
geometry of manifolds makes extensive use of differential forms1. In this sec-
tion, we briefly outline an extension of differential forms to discrete surfaces
(where, by rights, they probably ought to be called difference forms).

1In some older texts, you may encounter the use of the term Pfaffian. This is an older
term, synonymous with differential form, that has fallen out of use.
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A 0-form is simply a piecewise linear function f : V → R, assigning scalar
values to vertices.

A 1-form ω assigns a scalar value to each oriented edge of M . It must
also, by definition, satisfy the property that ωij = −ωji. It is thus an
antisymmetric function ω : E → R.

A 2-form assigns scalar values to oriented triangles of M . As before, it
must also be antisymmetric, namely αijk = −αkji.

Given a piecewise linear function f defined at the vertices of M , the
differential df : E → R is a 1-form given by

(68) dfij = fj − fi

Notice that this corresponds exactly with our definition of directional deriva-
tives given in Section 12.2. Specifically, we can see that

(69) dfij = ∇ef where e = eij

which is, of course, exactly what we would expect.
Given a 1-form ω, the differential dω is a 2-form. In a given triangle

(i, j, k) the value of this 2-form will be

(70) dωijk = ωij + ωjk + ωki

Note this obviously implies that d(df) = 0. It is equally apparent that∫
C df = 0, for any closed cycle of edges C,

13. Discrete Curvature

As in the previous section, it is important to understand that the devel-
opment of discrete notions of curvature is a research issue. Meyer et al. [11]
provide a good discussion of the definitions that follow.

13.1. Gaussian Curvature. We can define the Gaussian curvature at ver-
tex i by a direct discretization of the Gauss-Bonnet theorem:

(71) Ki = 2π −
∑
j∈Ti

θj

13.2. Mean Curvature. In the continuous case, it is well known that the
Laplace-Beltrami operator provides a means of computing the mean curva-
ture normal

(72) ∆x = xuu + xvv = 2κ̄n

Given this equivalence, we can use our earlier discretization of the Laplacian
over simplicial manifolds to produce an expression for the mean curvature
normal at vertex i

(73) κ̄ini = ∆xi = −1
2

∑
j∈Ni

(cot αij + cot βij)(xj − xi)
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Part 5. Further Reading

A comprehensive introduction to differential geometry is clearly far be-
yond the scope of these notes. Fortunately, there are a wide variety of books
available on the subject. The classic text of Hilbert and Cohn-Vossen [7]
provides an excellent introduction to the intuitive side of the subject matter
with a minimum of formalism. Besl and Jain [1] give a nice overview of the
essential material, and they discuss some computational techniques. For a
more comprehensive and systematic treatment of the subject, I have found
Kreyszig’s text [8] — an expanded version of an earlier book [9] — to be
fairly useful. Kreyszig’s book uses the more modern tensor notation. Will-
more [16] provides a fairly easy to read introduction using the somewhat
dated classical notation. O’Neill [12] is a widely used and well written intro-
ductory book that uses the third major notation system, based on covariant
differentiation, vector fields, and the shape operator.

Laugwitz [10] provides an admirably terse presentation of a truly im-
pressive amount of material. Unfortunately, the notation can be a little
confusing. Reading this book requires careful attention, but it’s a valuable
reference. Struik [15] is a fair text that uses the classical notation. It’s best
feature is the amount of historical background it provides. The book by
do Carmo [3] seems to fairly popular and he has more recently written a
companion book on Riemannian geometry [4]. You might also consider the
book by Gray [6] that provides fairly extensive examples that can be used
with Wolfram’s Mathematica software.
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